Adaptive neural coding: from biological to behavioral decision-making

Empirical decision-making in diverse species deviates from the predictions of normative choice theory, but why such suboptimal behavior occurs is unknown. Here, we propose that deviations from optimality arise from biological decision mechanisms that have evolved to maximize choice performance within intrinsic biophysical constraints. Sensory processing utilizes specific computations such as divisive normalization to maximize information coding in constrained neural circuits, and recent evidence suggests that analogous computations operate in decision-related brain areas. These adaptive computations implement a relative value code that may explain the characteristic context-dependent nature of behavioral violations of classical normative theory. Examining decision-making at the computational level thus provides a crucial link between the architecture of biological decision circuits and the form of empirical choice behavior.

[1]  Eero P. Simoncelli,et al.  Modeling temporal response characteristics of V1 neurons with a dynamic normalization model , 2001, Neurocomputing.

[2]  Dino J. Levy,et al.  The root of all value: a neural common currency for choice , 2012, Current Opinion in Neurobiology.

[3]  Matthias Bethge,et al.  Temporal Adaptation Enhances Efficient Contrast Gain Control on Natural Images , 2012, PLoS Comput. Biol..

[4]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[5]  A. Tversky,et al.  Context-dependent preferences , 1993 .

[6]  Paul Cisek,et al.  Neural Correlates of Biased Competition in Premotor Cortex , 2011, The Journal of Neuroscience.

[7]  S. Shafir,et al.  Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis) , 2001, Behavioral Ecology and Sociobiology.

[8]  Joseph W. Kable,et al.  The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value , 2013, NeuroImage.

[9]  J. Gallant,et al.  Natural Stimulation of the Nonclassical Receptive Field Increases Information Transmission Efficiency in V1 , 2002, The Journal of Neuroscience.

[10]  O. Hikosaka,et al.  Comparison of Reward Modulation in the Frontal Eye Field and Caudate of the Macaque , 2006, The Journal of Neuroscience.

[11]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[12]  Nils Kolling,et al.  A neural mechanism underlying failure of optimal choice with multiple alternatives , 2014, Nature Neuroscience.

[13]  C. Padoa-Schioppa,et al.  The representation of economic value in the orbitofrontal cortex is invariant for changes of menu , 2008, Nature Neuroscience.

[14]  C. Daniel Salzman,et al.  The Convergence of Information about Rewarding and Aversive Stimuli in Single Neurons , 2009, The Journal of Neuroscience.

[15]  Mel W. Khaw,et al.  Normalization is a general neural mechanism for context-dependent decision making , 2013, Proceedings of the National Academy of Sciences.

[16]  P. Glimcher,et al.  The Temporal Dynamics of Cortical Normalization Models of Decision-making , 2014 .

[17]  Michael N. Shadlen,et al.  Probabilistic reasoning by neurons , 2007, Nature.

[18]  P. Glimcher,et al.  Annals of the New York Academy of Sciences Efficient Coding and the Neural Representation of Value , 2022 .

[19]  Timothy E. J. Behrens,et al.  Hierarchical competitions subserving multi-attribute choice , 2014, Nature Neuroscience.

[20]  Susan D. Healy,et al.  Context-dependent decisions among options varying in a single dimension , 2012, Behavioural Processes.

[21]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[22]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[23]  H. Seo,et al.  Lateral Intraparietal Cortex and Reinforcement Learning during a Mixed-Strategy Game , 2009, Journal of Neuroscience.

[24]  B Suresh Krishna,et al.  Surround Suppression Sharpens the Priority Map in the Lateral Intraparietal Area , 2022 .

[25]  A. Tversky,et al.  Choice in Context: Tradeoff Contrast and Extremeness Aversion , 1992 .

[26]  Thomas A. Waite,et al.  Background context and decision making in hoarding gray jays , 2001 .

[27]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[28]  K. Doya,et al.  Representation of Action-Specific Reward Values in the Striatum , 2005, Science.

[29]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[30]  C. Padoa-Schioppa,et al.  Neuronal Encoding of Subjective Value in Dorsal and Ventral Anterior Cingulate Cortex , 2012, The Journal of Neuroscience.

[31]  James L. McClelland,et al.  Integration of Sensory and Reward Information during Perceptual Decision-Making in Lateral Intraparietal Cortex (LIP) of the Macaque Monkey , 2010, PloS one.

[32]  J. Kable,et al.  BOLD Subjective Value Signals Exhibit Robust Range Adaptation , 2014, The Journal of Neuroscience.

[33]  Melissa Bateson,et al.  Context-dependent foraging choices in risk-sensitive starlings , 2002, Animal Behaviour.

[34]  C. Padoa-Schioppa,et al.  Neurons in the orbitofrontal cortex encode economic value , 2006, Nature.

[35]  Kenway Louie,et al.  Separating Value from Choice: Delay Discounting Activity in the Lateral Intraparietal Area , 2010, The Journal of Neuroscience.

[36]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[37]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[38]  Raymond J. Fisman,et al.  Contrast Effects in Sequential Decisions: Evidence from Speed Dating , 2014, Review of Economics and Statistics.

[39]  W. Schultz,et al.  Adaptation of Reward Sensitivity in Orbitofrontal Neurons , 2010, The Journal of Neuroscience.

[40]  Uri Simonsohn,et al.  New Yorkers Commute More Everywhere: Contrast Effects in the Field , 2006, Review of Economics and Statistics.

[41]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[42]  Alireza Soltani,et al.  A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence , 2012, PLoS Comput. Biol..

[43]  Christopher P. Puto,et al.  Adding Asymmetrically Dominated Alternatives: Violations of Regularity & the Similarity Hypothesis. , 1981 .

[44]  George Loewenstein,et al.  Mistake #37: The Effect of Previously Encountered Prices on Current Housing Demand , 2006 .

[45]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[46]  James L. McClelland,et al.  Loss aversion and inhibition in dynamical models of multialternative choice. , 2004, Psychological review.

[47]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[48]  G. DeAngelis,et al.  A Normalization Model of Multisensory Integration , 2011, Nature Neuroscience.

[49]  C. Padoa-Schioppa Range-Adapting Representation of Economic Value in the Orbitofrontal Cortex , 2009, The Journal of Neuroscience.

[50]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[51]  A. Fairhall,et al.  Sensory adaptation , 2007, Current Opinion in Neurobiology.

[52]  Scott D. Brown,et al.  Not Just for Consumers , 2013, Psychological science.

[53]  P. Glimcher,et al.  Reward Value-Based Gain Control: Divisive Normalization in Parietal Cortex , 2011, The Journal of Neuroscience.

[54]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[55]  P. Glimcher,et al.  Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits , 2014, The Journal of Neuroscience.

[56]  Samuel W Cheadle,et al.  Adaptive Gain Control during Human Perceptual Choice , 2014, Neuron.

[57]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[58]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[59]  R. Ratcliff,et al.  Multialternative decision field theory: a dynamic connectionist model of decision making. , 2001, Psychological review.

[60]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[61]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[62]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.