Seltsames Verhalten nichtlinearer demographischer Prozesse

Ausgangspunkt der folgenden Arbeit ist die Frage, ob bzw. inwieweit die moderne Chaosforschung in der Demographie angewendet werden kann. Dazu vorab eine Bemerkung: Bei Gestaltung eines derartigen Einblickes bewegen sich die Autoren zwischen den Klippen mathematischer Unexaktheit einerseits und der Gefahr narrativer Geschwatzigkeit auf der anderen Seite. Es gehort eine Portion Unverfrorenheit dazu, uber ein mathematisch tiefes Gebiet mit nicht einfachen Methoden — um ein solches handelt es sich in der Theorie nichtlinearer dynamischer Systeme — nahezu rein verbal zu berichten2. Neben der Gefahr der Scharlatanerie ist auch dem missionarischen Eifer und Totalitatsanspruch mancher Chaosforscher zu begegnen. Hier gilt es also, zwischen Scylla und Charibdis zu manovrieren. Oder weniger prosaisch ausgedruckt: Wenn man von beiden Seiten in etwa gleichem Ausmas kritisiert wird, so besteht die Chance, das man auf einem neuartigen und seltsamen Ozean einen einigermasen zielfuhrenden Kurs eingeschlagen hat.

[1]  I. Stewart Does God Play Dice? The New Mathematics of Chaos , 1989 .

[2]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[3]  G. Feichtinger,et al.  Capital accumulation, aspiration adjustment, and population growth: limit cycles in an Easterlin-type model. , 1990, Mathematical population studies.

[4]  Murray Z. Frank,et al.  CHAOTIC DYNAMICS IN ECONOMIC TIME‐SERIES , 1988 .

[5]  D. Weeks,et al.  Two-Sex Models: Chaos, Extinction, and Other Dynamic Consequences of Sex , 1986, The American Naturalist.

[6]  Gustav Feichtinger,et al.  Demographische Analyse und populationsdynamische Modelle , 1979 .

[7]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[8]  Ulrich Krause,et al.  Asymptotic Properties for Inhomogeneous Iterations of Nonlinear Operators , 1988 .

[9]  Richard A. Easterlin,et al.  Birth And Fortune , 1980 .

[10]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[11]  Self-Regulation in Age-Structured Populations , 1992 .

[12]  Some Reducible Models of Age Dependent Dynamics , 1985 .

[13]  Ronald Lee Demographic Forecasting and the Easterlin Hypothesis , 1976 .

[14]  R. Easterlin,et al.  Birth and Fortune: The Impact of Numbers on Personal Welfare. , 1982 .

[15]  Cars H. Hommes,et al.  Chaotic dynamics in economic models: some simple case studies , 1991 .

[16]  W M Schaffer,et al.  Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. , 1988, Theoretical population biology.

[17]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[18]  F. N. David,et al.  Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. , 1973 .

[19]  G. Steinmann A Model of the History of Demographic-Economic Growth , 1984 .

[20]  Giancarlo Gandolfo,et al.  Mathematical methods and models in economic dynamics , 1971 .

[21]  W. Weidlich,et al.  Concepts and Models of a Quantitative Sociology , 1983 .

[22]  P. Samuelson,et al.  Comparison of linear and nonlinear models for human population dynamics. , 1977, Theoretical population biology.

[23]  Michele Boldrin,et al.  Equilibrium models displaying endogenous fluctuations and chaos: A survey , 1988 .

[24]  W Weidlich,et al.  A dynamic phase transition model for spatial agglomeration processes. , 1987, Journal of regional science.

[25]  N. Keyfitz The mathematics of sex and marriage , 1972 .

[26]  Francois Mignard,et al.  The chaotic rotation of Hyperion , 1984 .

[27]  H. Lorenz Nonlinear Dynamical Economics and Chaotic Motion , 1989 .

[28]  N. Bonneuil Turbulent dynamics in a XVIIth century population. , 1990, Mathematical population studies.

[29]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[30]  F. David Peat,et al.  Die Entdeckung des Chaos. Eine Reise durch die Chaos-Theorie , 1993 .

[31]  R. Smith,et al.  Estimating Dimension in Noisy Chaotic Time Series , 1992 .

[32]  K. Wachter,et al.  Pre-procreative ages in population stability and cyclicity. , 1991, Mathematical population studies.

[33]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[34]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[35]  K. P. Hadeler,et al.  Models for pair formation in bisexual populations , 1988, Journal of mathematical biology.

[36]  G. Feichtinger Stochastische Modelle demographischer Prozesse , 1971 .

[37]  Wolfgang Weidlich,et al.  Physics and social science — The approach of synergetics , 1991 .

[38]  John Conlisk,et al.  Interactive markov chains , 1976 .

[39]  William A. Brock,et al.  Nonlinearity And Complex Dynamics In Economics And Finance , 1988 .

[40]  K. Swick A Nonlinear Model for Human Population Dynamics , 1981 .

[41]  R. Day,et al.  Complex demoeconomic dynamics , 1989 .

[42]  A. Gallant,et al.  Finding Chaos in Noisy Systems , 1992 .

[43]  James Gleick Chaos: Making a New Science , 1987 .

[44]  Michele Boldrin,et al.  Persistent Oscillations and Chaos in Dynamic Economic Models: Notes for a Survey , 1988 .

[45]  J. H Pollard,et al.  Mathematical Models for the Growth of Human Populations , 1973 .

[46]  Hüseyin Koçak,et al.  Differential and difference equations through computer experiments , 1986 .

[47]  P. Gupta On two-sex models leading to stable populations. , 1972 .

[48]  Hans-Walter Lorenz,et al.  Business Cycle Theory , 1987 .

[49]  S. Tuljapurkar Cycles in nonlinear age-structured models. I. Renewal equations. , 1987, Theoretical population biology.

[50]  Philip Rothman,et al.  The Statistical Properties of Dimension Calculations Using Small Data Sets: Some Economic Applications , 1990 .

[51]  Nathan Keyfitz,et al.  Applied Mathematical Demography , 1978 .

[52]  G Feichtinger,et al.  Self-generated fertility waves in a non-linear continuous overlapping generations model , 1989, Journal of population economics.

[53]  R. Easterlin The American baby boom in historical perspective , 1962 .

[54]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[55]  Richard M. Goodwin,et al.  Chaotic Economic Dynamics , 1990 .

[56]  Michael Sonis,et al.  Interregional Migration: Dynamic Theory and Comparative Analysis , 1988 .

[57]  D A Ahlburg,et al.  Good times, bad times: a study of the future path of U.S. fertility. , 1983, Social biology.

[58]  K. Hadeler Pair formation in age-structured populations. , 1989, Acta applicandae mathematicae.

[59]  B. LeBaron,et al.  Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence , 1991 .

[60]  Hartmut Jürgens,et al.  Fractals for the Classroom: Part One Introduction to Fractals and Chaos , 1991 .

[61]  J. Guckenheimer,et al.  The dynamics of density dependent population models , 1977, Journal of mathematical biology.

[62]  Hans-Walter Lorenz,et al.  Business Cycle Theory: A Survey of Methods and Concepts , 1987 .

[63]  W. Brock,et al.  Is the business cycle characterized by deterministic chaos , 1988 .

[64]  Richard H. Day,et al.  The Emergence of Chaos from Classical Economic Growth , 1983 .

[65]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[66]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[67]  L. Euler,et al.  A general investigation into the mortality and multiplication of the human species. , 1970, Theoretical population biology.

[68]  J. Benhabib,et al.  Endogenous Fluctuations in the Barro-Becker Theory of Fertility , 1989 .

[69]  Kenneth W. Wachter Elusive cycles: are there dynamically possible Lee-Easterlin models for U.S. births? , 1991 .

[70]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[71]  Jess Benhabib,et al.  Chaos: Significance, Mechanism, and Economic Applications , 1989 .

[72]  M Artzrouni,et al.  Population growth through history and the escape from the Malthusian trap: a homeostatic simulation model. , 1985, Genus.

[73]  A. Saperstein Chaos — a model for the outbreak of war , 1984, Nature.

[74]  P. Samuelson An economist's non-linear model of self-generated fertility waves. , 1976, Population studies.

[75]  W M Schaffer,et al.  Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? , 1985, IMA journal of mathematics applied in medicine and biology.

[76]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[77]  William A. Brock,et al.  Differential Equations, Stability and Chaos in Dynamic Economics , 1989 .