From dynamic movement primitives to associative skill memories

[1]  P. N. Kugler,et al.  Information, Natural Law, and the Self-Assembly of Rhythmic Movement , 2015 .

[2]  Jun Nakanishi,et al.  Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors , 2013, Neural Computation.

[3]  Stefan Schaal,et al.  Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments , 2012, IEEE Transactions on Autonomous Mental Development.

[4]  Stefan Schaal,et al.  Movement Segmentation and Recognition for Imitation Learning , 2012, AISTATS.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  Stefan Schaal,et al.  Online movement adaptation based on previous sensor experiences , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Aude Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[8]  Stefan Schaal,et al.  Movement segmentation using a primitive library , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Stefan Schaal,et al.  Learning variable impedance control , 2011, Int. J. Robotics Res..

[10]  Stefan Schaal,et al.  Skill learning and task outcome prediction for manipulation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Stefan Schaal,et al.  Learning to grasp under uncertainty , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  P. Schrimpf,et al.  Dynamic Programming , 2011 .

[13]  Stefan Schaal,et al.  A Generalized Path Integral Control Approach to Reinforcement Learning , 2010, J. Mach. Learn. Res..

[14]  Jan Peters,et al.  Policy Search for Motor Primitives , 2009, Künstliche Intell..

[15]  Stefan Schaal,et al.  Learning and generalization of motor skills by learning from demonstration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  Stefan Schaal,et al.  Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  Stefan Schaal,et al.  2008 Special Issue: Reinforcement learning of motor skills with policy gradients , 2008 .

[18]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[19]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[20]  H. Kappen An introduction to stochastic control theory, path integrals and reinforcement learning , 2007 .

[21]  Stefan Schaal,et al.  Dynamics systems vs. optimal control--a unifying view. , 2007, Progress in brain research.

[22]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[23]  Marc Toussaint,et al.  Probabilistic inference for solving discrete and continuous state Markov Decision Processes , 2006, ICML.

[24]  Christopher W. Geib,et al.  Object Action Complexes as an Interface for Planning and Robot Control , 2006 .

[25]  H. Kappen Linear theory for control of nonlinear stochastic systems. , 2004, Physical review letters.

[26]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[27]  Jun Morimoto,et al.  A framework for learning biped locomotion with dynamical movement primitives , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[28]  Reza Shadmehr,et al.  The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning , 2004 .

[29]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[30]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: II. Sensory Image Cancellation , 2000, Journal of Computational Neuroscience.

[31]  G. Schöner,et al.  A dynamic theory of coordination of discrete movement , 1990, Biological Cybernetics.

[32]  Brett R Fajen,et al.  Behavioral dynamics of steering, obstacle avoidance, and route selection. , 2003, Journal of experimental psychology. Human perception and performance.

[33]  H. Zelaznik,et al.  The Cerebellum and Event Timing , 2002, Annals of the New York Academy of Sciences.

[34]  Jun Nakanishi,et al.  Learning Attractor Landscapes for Learning Motor Primitives , 2002, NIPS.

[35]  Tamar Flash,et al.  Computational approaches to motor control , 2001, Current Opinion in Neurobiology.

[36]  V. Akila,et al.  Information , 2001, The Lancet.

[37]  E. Marder Motor pattern generation , 2000, Current Opinion in Neurobiology.

[38]  Jon Rigelsford,et al.  Modelling and Control of Robot Manipulators , 2000 .

[39]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[40]  Stefan Schaal,et al.  Is imitation learning the route to humanoid robots? , 1999, Trends in Cognitive Sciences.

[41]  M Kawato,et al.  Internal models for motor control. , 2007, Novartis Foundation symposium.

[42]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[43]  Matthew M. Williamson,et al.  Neural control of rhythmic arm movements , 1998, Neural Networks.

[44]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[45]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[46]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[47]  S. Schaal,et al.  Programmable Pattern Generators , 1998 .

[48]  W. T. Thach,et al.  No clock signal in the discharge of neurons in the deep cerebellar nuclei. , 1997, Journal of neurophysiology.

[49]  G. Lintern Dynamic patterns: The self-organization of brain and behavior , 1997, Complex..

[50]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[51]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[52]  Daniel E. Koditschek,et al.  Further progress in robot juggling: solvable mirror laws , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[53]  E. A. Jackson,et al.  Perspectives of nonlinear dynamics , 1990 .

[54]  E. Atlee Jackson,et al.  Perspectives of Nonlinear Dynamics: Volume 1 , 1989 .

[55]  G. Ermentrout,et al.  Coupled oscillators and the design of central pattern generators , 1988 .

[56]  S. Grossberg,et al.  Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. , 1988, Psychological review.

[57]  R. Stengel Stochastic Optimal Control: Theory and Application , 1986 .

[58]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[59]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[60]  C. Lent On neuronal nihilism , 1980, Behavioral and Brain Sciences.

[61]  Allen I. Selverston,et al.  Are central pattern generators understandable? , 1980, Behavioral and Brain Sciences.

[62]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[63]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[64]  M. Ciletti,et al.  The computation and theory of optimal control , 1972 .