Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo

[1]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[3]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[4]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[5]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[6]  N. Daw,et al.  The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  J. Malpeli,et al.  Responses of neurons in primary visual cortex are modulated by eye position. , 1993, Journal of neurophysiology.

[8]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[9]  D. V. van Essen,et al.  Responses in area V4 depend on the spatial relationship between stimulus and attention. , 1996, Journal of neurophysiology.

[10]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[11]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[12]  C. Stevens,et al.  Input synchrony and the irregular firing of cortical neurons , 1998, Nature Neuroscience.

[13]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[14]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[15]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[16]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[17]  A. Destexhe,et al.  Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[18]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[19]  G. Hauske,et al.  Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. , 2000, Spatial vision.

[20]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[21]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[22]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[23]  D. Hansel,et al.  How Noise Contributes to Contrast Invariance of Orientation Tuning in Cat Visual Cortex , 2002, The Journal of Neuroscience.

[24]  K. Miller,et al.  Neural noise can explain expansive, power-law nonlinearities in neural response functions. , 2002, Journal of neurophysiology.

[25]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[26]  A. Thomson,et al.  Target and temporal pattern selection at neocortical synapses. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  S. du Lac,et al.  Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. , 2002, Journal of neurophysiology.

[28]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[29]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[30]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[31]  Wolf Singer,et al.  Features of neuronal synchrony in mouse visual cortex. , 2003, Journal of neurophysiology.

[32]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[33]  Kenneth D Miller,et al.  Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone , 2003, The Journal of Neuroscience.

[34]  L. Palmer,et al.  Response to Contrast of Electrophysiologically Defined Cell Classes in Primary Visual Cortex , 2003, The Journal of Neuroscience.

[35]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[36]  Shunting inhibition and mGluR-mediated disinhibition modulate the gain of granule cell input-output relationships during synaptic excitation in rat cerebellum , 2003 .

[37]  T. Sejnowski,et al.  Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity , 2003, Neuroscience.

[38]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[40]  Henry J. Alitto,et al.  Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. , 2004, Journal of neurophysiology.

[41]  Jessica A. Cardin,et al.  Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex. , 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  R. Reid,et al.  Attention Modulates the Responses of Simple Cells in Monkey Primary Visual Cortex , 2005, The Journal of Neuroscience.

[43]  Hysell V. Oviedo,et al.  Variation of Input-Output Properties along the Somatodendritic Axis of Pyramidal Neurons , 2005, The Journal of Neuroscience.

[44]  Nicholas J. Priebe,et al.  Short-Term Depression in Thalamocortical Synapses of Cat Primary Visual Cortex , 2005, The Journal of Neuroscience.

[45]  Maria V. Sanchez-Vives,et al.  Role of Synaptic and Intrinsic Membrane Properties in Short-Term Receptive Field Dynamics in Cat Area 17 , 2005, The Journal of Neuroscience.

[46]  M. A. Smith,et al.  Stimulus Dependence of Neuronal Correlation in Primary Visual Cortex of the Macaque , 2005, The Journal of Neuroscience.

[47]  Jessica A. Cardin,et al.  Stimulus-Dependent γ (30-50 Hz) Oscillations in Simple and Complex Fast Rhythmic Bursting Cells in Primary Visual Cortex , 2005, The Journal of Neuroscience.

[48]  J. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[49]  H. Robinson,et al.  Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics. , 2006, Journal of neurophysiology.

[50]  Sean J. Slee,et al.  Diversity of Gain Modulation by Noise in Neocortical Neurons: Regulation by the Slow Afterhyperpolarization Conductance , 2006, The Journal of Neuroscience.

[51]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[52]  Eric I. Knudsen,et al.  Top-down gain control of the auditory space map by gaze control circuitry in the barn owl , 2006, Nature.

[53]  Marcia Grabowecky,et al.  Attention induces synchronization-based response gain in steady-state visual evoked potentials , 2007, Nature Neuroscience.

[54]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[55]  Nicholas J. Priebe,et al.  The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex , 2007, Neuron.

[56]  M. Hawken,et al.  Gain Modulation by Nicotine in Macaque V1 , 2007, Neuron.

[57]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .