Partial Identification of Counter Factual Choice Probabilities
暂无分享,去创建一个
[1] Charles F. Manski,et al. Confidence Intervals for Partially Identified Parameters , 2003 .
[2] J. Marschak. Binary Choice Constraints on Random Utility Indicators , 1959 .
[3] Alastair Scott,et al. Quick Simultaneous Confidence Intervals for Multinomial Proportions , 1987 .
[4] Rosa L. Matzkin. Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models , 1992 .
[5] D. McFadden. Econometric Models of Probabilistic Choice , 1981 .
[6] Francesca Molinari,et al. Asymptotic Properties for a Class of Partially Identified Models , 2006 .
[7] Guido W. Imbens,et al. The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish , 2000 .
[8] Adam M. Rosen,et al. Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number of Moment Inequalities , 2006 .
[9] E. S. Pearson,et al. THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .
[10] L. Brown,et al. Interval Estimation for a Binomial Proportion , 2001 .
[11] C. Manski,et al. On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .
[12] D. McFadden. Conditional logit analysis of qualitative choice behavior , 1972 .
[13] Thierry Magnac,et al. Identification and information in monotone binary models , 2007 .
[14] A Agresti,et al. On Small‐Sample Confidence Intervals for Parameters in Discrete Distributions , 2001, Biometrics.
[15] T. Magnac,et al. Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data , 2008 .
[16] Joseph Glaz,et al. Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions , 1995 .
[17] Steven T. Berry,et al. Automobile Prices in Market Equilibrium , 1995 .
[18] C. Manski. MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .
[19] J. Horowitz,et al. Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data , 2000 .
[20] C. Manski,et al. Inference on Regressions with Interval Data on a Regressor or Outcome , 2002 .
[21] D. McFadden,et al. MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .
[22] L. A. Goodman. On Simultaneous Confidence Intervals for Multinomial Proportions , 1965 .
[23] S. Afriat. THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .
[24] D. Wise,et al. A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .
[25] Peter C. Fishburn,et al. Induced binary probabilities and the linear ordering polytope: a status report , 1992 .
[26] C. Daganzo,et al. Multinomial Probit and Qualitative Choice: A Computationally Efficient Algorithm , 1977 .
[27] V. Chernozhukov,et al. Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .
[28] Bo E. Honoré,et al. Bounds on Parameters in Panel Dynamic Discrete Choice Models , 2006 .
[29] C. Manski. Nonparametric Bounds on Treatment Effects , 1989 .
[30] S. Cosslett. DISTRIBUTION-FREE MAXIMUM LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL1 , 1983 .
[31] Saul Lach,et al. Using Elicited Choice Probabilities to Estimate Random Utility Models: Preferences for Electricity Reliability , 2008 .
[32] Daniel McFadden,et al. Modelling the Choice of Residential Location , 1977 .
[33] C. Blyth,et al. Binomial Confidence Intervals , 1983 .
[34] J. Glaz,et al. Simultaneous confidence intervals for multinomial proportions , 1999 .
[35] P. Samuelson. Consumption Theory in Terms of Revealed Preference , 1948 .
[36] George Casella,et al. Refining binomial confidence intervals , 1986 .
[37] C. Manski. Monotone Treatment Response , 2009, Identification for Prediction and Decision.
[38] C. Manski. Identification of Binary Response Models , 1988 .
[39] D. McFadden. Revealed stochastic preference: a synthesis , 2005 .