Recruitment Framework for Participatory Sensing Data Collections

Mobile phones have evolved from devices that are just used for voice and text communication to platforms that are able to capture and transmit a range of data types (image, audio, and location). The adoption of these increasingly capable devices by society has enabled a potentially pervasive sensing paradigm - participatory sensing. A coordinated participatory sensing system engages individuals carrying mobile phones to explore phenomena of interest using in situ data collection. For participatory sensing to succeed, several technical challenges need to be solved. In this paper, we discuss one particular issue: developing a recruitment framework to enable organizers to identify well-suited participants for data collections based on geographic and temporal availability as well as participation habits. This recruitment system is evaluated through a series of pilot data collections where volunteers explored sustainable processes on a university campus.

[1]  Hyong S. Kim,et al.  Dynamic guard bandwidth scheme for wireless broadband networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[2]  Chunming Qiao,et al.  On profiling mobility and predicting locations of wireless users , 2006, REALMAN '06.

[3]  Eric Horvitz,et al.  Predestination: Inferring Destinations from Partial Trajectories , 2006, UbiComp.

[4]  Gaurav S. Sukhatme,et al.  Reconfiguration methods for mobile sensor networks , 2007, TOSN.

[5]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[6]  David Kotz,et al.  AnonySense: Opportunistic and Privacy-Preserving Context Collection , 2009, Pervasive.

[7]  Miodrag Potkonjak,et al.  Power efficient organization of wireless sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[8]  David Kotz,et al.  Extracting a Mobility Model from Real User Traces , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[9]  Xing Xie,et al.  Understanding transportation modes based on GPS data for web applications , 2010, TWEB.

[10]  Andreas Krause,et al.  Toward Community Sensing , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[11]  Marco Voss,et al.  Comparing and Evaluating Metrics for Reputation Systems by Simulation , 2004 .

[12]  S. Chong,et al.  SLAW : A Mobility Model for Human Walks , 2009 .

[13]  John Krumm,et al.  Route Prediction from Trip Observations , 2008 .

[14]  Deborah Estrin,et al.  Determining transportation mode on mobile phones , 2008, 2008 12th IEEE International Symposium on Wearable Computers.

[15]  Audun Jøsang,et al.  AIS Electronic Library (AISeL) , 2017 .

[16]  Shashi Shekhar,et al.  Discovering personal gazetteers: an interactive clustering approach , 2004, GIS '04.

[17]  James A. Landay,et al.  An architecture for privacy-sensitive ubiquitous computing , 2004, MobiSys '04.

[18]  Sajal K. Das,et al.  LeZi-update: an information-theoretic approach to track mobile users in PCS networks , 1999, MobiCom.

[19]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[20]  Kentaro Toyama,et al.  Project Lachesis: Parsing and Modeling Location Histories , 2004, GIScience.

[21]  Injong Rhee,et al.  SLAW: A New Mobility Model for Human Walks , 2009, IEEE INFOCOM 2009.

[22]  Katie Shilton,et al.  Four billion little brothers? , 2009, Commun. ACM.

[23]  Cacm Staff,et al.  A conversation with David E. Shaw , 2009 .

[24]  Mani B. Srivastava,et al.  Reputation-based framework for high integrity sensor networks , 2004, SASN '04.

[25]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[26]  Steve Benford,et al.  Experiences of participatory sensing in the wild , 2009, UbiComp.

[27]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[28]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[29]  Romit Roy Choudhury,et al.  Micro-Blog: sharing and querying content through mobile phones and social participation , 2008, MobiSys '08.

[30]  Nicholas R. Jennings,et al.  Coping with inaccurate reputation sources: experimental analysis of a probabilistic trust model , 2005, AAMAS '05.

[31]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004, MOCO.

[32]  Emiliano Miluzzo,et al.  People-centric urban sensing , 2006, WICON '06.

[33]  Mark H. Hansen,et al.  Participatory sensing - eScholarship , 2006 .

[34]  Audun Jøsang,et al.  A survey of trust and reputation systems for online service provision , 2007, Decis. Support Syst..

[35]  Henry A. Kautz,et al.  Location-Based Activity Recognition using Relational Markov Networks , 2005, IJCAI.

[36]  Deborah Estrin,et al.  Using Context Annotated Mobility Profiles to Recruit Data Collectors in Participatory Sensing , 2009, LoCA.

[37]  R. Bonney,et al.  Citizen Science as a Tool for Conservation in Residential Ecosystems , 2007 .

[38]  A. Pentland,et al.  Eigenbehaviors: identifying structure in routine , 2009, Behavioral Ecology and Sociobiology.

[39]  Bernt Schiele,et al.  Location- and Context-Awareness, Third International Symposium, LoCA 2007, Oberpfaffenhofen, Germany, September 20-21, 2007, Proceedings , 2007, LoCA.

[40]  Uwe Hansmann,et al.  Pervasive Computing , 2003 .

[41]  C. Findlay,et al.  The Rauischholzhausen Agenda for Road Ecology , 2007 .

[42]  M. Rehm,et al.  Proceedings of AAMAS , 2005 .

[43]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[44]  Ahmed Helmy,et al.  CSI: A Paradigm for Behavior-oriented Delivery Services in Mobile Human Networks , 2008, ArXiv.

[45]  Min Y. Mun,et al.  Parsimonious Mobility Classification using GSM and WiFi Traces , 2008 .

[46]  Andrew T. Campbell,et al.  Fast track article: Bubble-sensing: Binding sensing tasks to the physical world , 2010 .

[47]  M. Hansen,et al.  Participatory Sensing , 2019, Internet of Things.