Evolving locomotion for a 12-DOF quadruped robot in simulated environments

We demonstrate the power of evolutionary robotics (ER) by comparing to a more traditional approach its performance and cost on the task of simulated robot locomotion. A novel quadruped robot is introduced, the legs of which - each having three non-coplanar degrees of freedom - are very maneuverable. Using a simplistic control architecture and a physics simulation of the robot, gaits are designed both by hand and using a highly parallel evolutionary algorithm (EA). It is found that the EA produces, in a small fraction of the time that takes to design by hand, gaits that travel at two to four times the speed of the hand-designed one. The flexibility of this approach is demonstrated by applying it across a range of differently configured simulators.