Generalizing the inverse FFT off the unit circle
暂无分享,去创建一个
[1] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[2] Daniel N. Rockmore,et al. The FFT: an algorithm the whole family can use , 2000, Comput. Sci. Eng..
[3] R. Bracewell. The Fourier Transform and Its Applications , 1966 .
[4] L. Rabiner,et al. The chirp z-transform algorithm , 1969 .
[5] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[6] V. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .
[7] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[8] M. Ng. Iterative Methods for Toeplitz Systems , 2004 .
[9] I. Gohberg,et al. Convolution Equations and Projection Methods for Their Solution , 1974 .
[10] V. Strassen. Gaussian elimination is not optimal , 1969 .
[11] L D Pustyl'nikov,et al. Toeplitz and Hankel matrices and their applications , 1984 .
[12] Smith,et al. Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications , 2007 .
[13] L. Bluestein. A linear filtering approach to the computation of discrete Fourier transform , 1970 .
[14] L. Rabiner,et al. The chirp z-transform algorithm and its application , 1969 .
[15] R N Bracewell,et al. Numerical Transforms , 1990, Science.
[16] D. A. Frickey,et al. Using the inverse Chirp-Z transform for time-domain analysis of simulated radar signals , 1995 .
[17] Å. Björck,et al. Solution of Vandermonde Systems of Equations , 1970 .
[18] Grant D. Martin,et al. Chirp Z-transform spectral zoom optimization with MATLAB. , 2005 .
[19] S. R. Simanca,et al. On Circulant Matrices , 2012 .
[20] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[21] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[22] Victor Y. Pan,et al. Fundamental Computations with Polynomials , 1994 .
[23] E. Brigham,et al. The fast Fourier transform , 2016, IEEE Spectrum.
[24] R. Mersereau,et al. An algorithm for performing an inverse chirp z-transform , 1974 .
[25] L. Rabiner,et al. The chirp z-transform algorithm-a lesson in serendipity , 2004, IEEE Signal Processing Magazine.
[26] I. Gohberg,et al. Complexity of multiplication with vectors for structured matrices , 1994 .
[27] C. K. Yuen,et al. Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.
[28] R. M. Mersereau,et al. Digital reconstruction of multidimensional signals from their projections , 1974 .
[29] W. F. Trench. An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .
[30] Kristopher L. Kuhlman,et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .
[31] Don H. Johnson,et al. Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.