Generalizing the inverse FFT off the unit circle

This paper describes the first algorithm for computing the inverse chirp z-transform (ICZT) in O(n log n) time. This matches the computational complexity of the chirp z-transform (CZT) algorithm that was discovered 50 years ago. Despite multiple previous attempts, an efficient ICZT algorithm remained elusive until now. Because the ICZT can be viewed as a generalization of the inverse fast Fourier transform (IFFT) off the unit circle in the complex plane, it has numerous practical applications in a wide variety of disciplines. This generalization enables exponentially growing or exponentially decaying frequency components, which cannot be done with the IFFT. The ICZT algorithm was derived using the properties of structured matrices and its numerical accuracy was evaluated using automated tests. A modification of the CZT algorithm, which improves its numerical stability for a subset of the parameter space, is also described and evaluated.

[1]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[2]  Daniel N. Rockmore,et al.  The FFT: an algorithm the whole family can use , 2000, Comput. Sci. Eng..

[3]  R. Bracewell The Fourier Transform and Its Applications , 1966 .

[4]  L. Rabiner,et al.  The chirp z-transform algorithm , 1969 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  V. Pan Structured Matrices and Polynomials: Unified Superfast Algorithms , 2001 .

[7]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[8]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[9]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[10]  V. Strassen Gaussian elimination is not optimal , 1969 .

[11]  L D Pustyl'nikov,et al.  Toeplitz and Hankel matrices and their applications , 1984 .

[12]  Smith,et al.  Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications , 2007 .

[13]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[14]  L. Rabiner,et al.  The chirp z-transform algorithm and its application , 1969 .

[15]  R N Bracewell,et al.  Numerical Transforms , 1990, Science.

[16]  D. A. Frickey,et al.  Using the inverse Chirp-Z transform for time-domain analysis of simulated radar signals , 1995 .

[17]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[18]  Grant D. Martin,et al.  Chirp Z-transform spectral zoom optimization with MATLAB. , 2005 .

[19]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[20]  Jack J. Dongarra,et al.  Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..

[21]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[22]  Victor Y. Pan,et al.  Fundamental Computations with Polynomials , 1994 .

[23]  E. Brigham,et al.  The fast Fourier transform , 2016, IEEE Spectrum.

[24]  R. Mersereau,et al.  An algorithm for performing an inverse chirp z-transform , 1974 .

[25]  L. Rabiner,et al.  The chirp z-transform algorithm-a lesson in serendipity , 2004, IEEE Signal Processing Magazine.

[26]  I. Gohberg,et al.  Complexity of multiplication with vectors for structured matrices , 1994 .

[27]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  R. M. Mersereau,et al.  Digital reconstruction of multidimensional signals from their projections , 1974 .

[29]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[30]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[31]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.