Adaptive Decentralized Control of Mobile Underwater Sensor Networks and Robots for Modeling Underwater Phenomena

Understanding the dynamics of bodies of water and their impact on the global environment requires sensing information over the full volume of water. In this article, we develop a gradient-based decentralized controller that dynamically adjusts the depth of a network of underwater sensors to optimize sensing for computing maximally detailed volumetric models. We prove that the controller converges to a local minimum and show how the controller can be extended to work with hybrid robot and sensor network systems. We implement the controller on an underwater sensor network with depth adjustment capabilities. Through simulations and in-situ experiments, we verify the functionality and performance of the system and algorithm.

[1]  Daniel R. Lynch,et al.  Objective analysis for coastal regimes , 2001 .

[2]  Daniela Rus,et al.  Autonomous Depth Adjustment for Underwater Sensor Networks: Design and Applications , 2012, IEEE/ASME Transactions on Mechatronics.

[3]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[4]  A.R. Isern The Ocean Observatories Initiative: Wiring the Ocean for Interactive Scientific Discovery , 2006, OCEANS 2006.

[5]  Kenneth S. Johnson,et al.  The Land/Ocean Biogeochemical Observatory: A robust networked mooring system for continuously monitoring complex biogeochemical cycles in estuaries , 2008 .

[6]  K. Carder,et al.  Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll , 1989 .

[7]  Carrick Detweiler,et al.  Autonomous depth adjustment for underwater sensor networks , 2010, WUWNet.

[8]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[9]  Carrick Detweiler,et al.  Saving Energy with Buoyancy and Balance Control for Underwater Robots with Dynamic Payloads , 2008, ISER.

[10]  Geoffrey A. Hollinger,et al.  Underwater Data Collection Using Robotic Sensor Networks , 2012, IEEE Journal on Selected Areas in Communications.

[11]  Robert F. Chen,et al.  High-resolution measurements of chromophoric dissolved organic matter (CDOM) in the Neponset River Estuary, Boston Harbor, MA , 2005 .

[12]  Carrick Detweiler,et al.  AquaNodes: an underwater sensor network , 2007, Underwater Networks.

[13]  Oscar Schofield,et al.  Resolving the Impacts and Feedback of Ocean Optics on Upper Ocean Ecology , 2001 .

[14]  J. Proakis,et al.  Performance of high‐rate adaptive equalization on a shallow water acoustic channel , 1996 .

[15]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[16]  Han-Lim Choi,et al.  Continuous motion planning for information forecast , 2008, 2008 47th IEEE Conference on Decision and Control.

[17]  D. Rus,et al.  An Underwater Sensor Network with Dual Communications, Sensing, and Mobility , 2007, OCEANS 2007 - Europe.

[18]  Meng Zhou,et al.  Influences of the Gulf of Maine intrusion on the Massachusetts Bay spring bloom: A comparison between 1998 and 2000 , 2007 .

[19]  Alan F. Blumberg,et al.  Modeling transport processes in the coastal ocean , 1993 .

[20]  Mac Schwager,et al.  Distributed robotic sensor networks: An information-theoretic approach , 2012, Int. J. Robotics Res..

[21]  N. Blough,et al.  Chapter 10 – Chromophoric DOM in the Coastal Environment , 2002 .

[22]  Jun-Hong Cui,et al.  Impact of real modem characteristics on practical underwater MAC design , 2012, 2012 Oceans - Yeosu.

[23]  Carrick Detweiler,et al.  Estimation of Thruster Configurations for Reconfigurable Modular Underwater Robots , 2010, ISER.

[24]  N.M. Patrikalakis,et al.  Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming , 2008, IEEE Journal of Oceanic Engineering.

[25]  A. Blumberg,et al.  A Description of a Three‐Dimensional Coastal Ocean Circulation Model , 2013 .

[26]  Michael R. Roman,et al.  Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum , 2001 .

[27]  Venugopalan Pallayil,et al.  Variability in link performance of an underwater acoustic network , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[28]  Jim Kurose,et al.  A survey of practical issues in underwater networks , 2007 .

[29]  Kemal Akkaya,et al.  Self-deployment of sensors for maximized coverage in underwater acoustic sensor networks , 2009, Comput. Commun..

[30]  Han-Lim Choi,et al.  Continuous trajectory planning of mobile sensors for informative forecasting , 2010, Autom..

[31]  Robert F. Chen,et al.  Adaptive decentralized control of underwater sensor networks for modeling underwater phenomena , 2010, SenSys '10.

[32]  Carrick Detweiler,et al.  AMOUR V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads , 2010, Int. J. Robotics Res..

[33]  Mac Schwager,et al.  A gradient optimization approach to adaptive multi-robot control , 2009 .

[34]  Mac Schwager,et al.  A scalable information theoretic approach to distributed robot coordination , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Daniela Rus,et al.  Non-parametric inference and coordination for distributed robotics , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[36]  John J. Leonard,et al.  Passive Mobile Robot Localization within a Fixed Beacon Field , 2006, WAFR.

[37]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[38]  J. Orcutt,et al.  The Approach to Cyberinfrastructure for the Ocean Observatories Initiative , 2007, OCEANS 2007.

[39]  Jie Zhao,et al.  The apposite way path planning algorithm based on local message , 2012, 2012 IEEE International Conference on Mechatronics and Automation.

[40]  Gaurav S. Sukhatme,et al.  Persistent ocean monitoring with underwater gliders: Adapting sampling resolution , 2011, J. Field Robotics.

[41]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[42]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots Decentralized, Adaptive Coverage Control for Networked Robots , 2009 .

[43]  Lino Marques,et al.  Robots for Environmental Monitoring: Significant Advancements and Applications , 2012, IEEE Robotics & Automation Magazine.

[44]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..

[45]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[46]  Alan F. Blumberg,et al.  Predicting the Physical Effects of Relocating Boston's Sewage Outfall , 2000 .

[47]  Robert S. H. Istepanian,et al.  The use of underwater acoustic biotelemetry for monitoring the ECG of a swimming patient , 1995, Proceedings of the First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India. An International Meet.

[48]  Julian J. Dodson,et al.  Abundance of larval rainbow smelt (Osmerus mordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the middle St. Lawrence estuary , 1989 .

[49]  J. Schubel,et al.  Turbidity Maximum of the Northern Chesapeake Bay , 1968, Science.

[50]  Vedat Coskun,et al.  Wireless sensor networks for underwater survelliance systems , 2006, Ad Hoc Networks.