Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models

[1]  J. Curry,et al.  The implications for climate sensitivity of AR5 forcing and heat uptake estimates , 2015, Climate Dynamics.

[2]  Ming Zhao,et al.  Tropical temperature trends in Atmospheric General Circulation Model simulations and the impact of uncertainties in observed SSTs , 2014 .

[3]  J. Willis,et al.  Deep-ocean contribution to sea level and energy budget not detectable over the past decade , 2014 .

[4]  Shin-ichi Iga,et al.  High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes , 2014 .

[5]  C. Zhai,et al.  Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity , 2014 .

[6]  D. Shindell Inhomogeneous forcing and transient climate sensitivity , 2014 .

[7]  Kerry A. Emanuel,et al.  Radiative‐convective instability , 2014 .

[8]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[9]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[10]  T. Mauritsen,et al.  Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2 , 2013 .

[11]  Thorsten Mauritsen,et al.  Robust increase in equilibrium climate sensitivity under global warming , 2013 .

[12]  W. G. Strand,et al.  Climate Change Projections in CESM1(CAM5) Compared to CCSM4 , 2013 .

[13]  M. Holden,et al.  A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series , 2013 .

[14]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[15]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[16]  Reto Knutti,et al.  Energy budget constraints on climate response , 2013 .

[17]  Bjorn Stevens,et al.  Water in the atmosphere , 2013 .

[18]  B. Stevens,et al.  Climate feedback efficiency and synergy , 2013, Climate Dynamics.

[19]  Martin S. Singh,et al.  Vertical structure of warming consistent with an upward shift in the middle and upper troposphere , 2013 .

[20]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[21]  Aiko Voigt,et al.  Climate and climate change in a radiative‐convective equilibrium version of ECHAM6 , 2013 .

[22]  Thomas M. Smith,et al.  Global precipitation trends in 1900–2005 from a reconstruction and coupled model simulations , 2013 .

[23]  Andrew E. Dessler,et al.  Observations of Climate Feedbacks over 2000–10 and Comparisons to Climate Models , 2013 .

[24]  Leopold Haimberger,et al.  Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations , 2012 .

[25]  Q. Fu,et al.  Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites , 2012 .

[26]  K. Trenberth,et al.  A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity , 2012, Science.

[27]  B. Stevens,et al.  Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity Atmosphere , 2012 .

[28]  Isaac M. Held,et al.  Detailed Investigation of the Self-Aggregation of Convection in Cloud-Resolving Simulations , 2012 .

[29]  S. Bony,et al.  Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation , 2012 .

[30]  S. Wijffels,et al.  Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000 , 2012, Science.

[31]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[32]  Shin-ichi Iga,et al.  Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes , 2012 .

[33]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[34]  S. Wijffels,et al.  Durack During 1950 to 2000 Ocean Salinities Reveal Strong Global Water Cycle Intensification , 2012 .

[35]  Robert Pincus,et al.  On Constraining Estimates of Climate Sensitivity with Present-Day Observations through Model Weighting , 2011 .

[36]  A. Dessler,et al.  A Determination of the Cloud Feedback from Climate Variations over the Past Decade , 2010, Science.

[37]  R. Lindzen,et al.  On the observational determination of climate sensitivity and its implications , 2010 .

[38]  Kevin E. Trenberth,et al.  Tracking Earth's Energy , 2010, Science.

[39]  R. Lindzen,et al.  Comment on “Variations of tropical upper tropospheric clouds with sea surface temperature and implications for radiative effects” by H. Su et al. , 2010 .

[40]  K. Trenberth,et al.  Relationships between tropical sea surface temperature and top‐of‐atmosphere radiation , 2010 .

[41]  R. Lindzen,et al.  On the determination of climate feedbacks from ERBE data , 2009 .

[42]  Robert Burgman,et al.  Observational and Model Evidence for Positive Low-Level Cloud Feedback , 2009, Science.

[43]  Q. Fu,et al.  Hadley Cell Widening: Model Simulations versus Observations , 2009 .

[44]  R. Lindzen,et al.  Observed variations in convective precipitation fraction and stratiform area with sea surface temperature , 2008 .

[45]  M. Santee,et al.  Variations of tropical upper tropospheric clouds with sea surface temperature and implications for radiative effects , 2008 .

[46]  Nir Y. Krakauer,et al.  How much will precipitation increase with global warming , 2008 .

[47]  G. Hegerl,et al.  Detection of human influence on twentieth-century precipitation trends , 2007, Nature.

[48]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[49]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[50]  C. Bretherton,et al.  An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST , 2005 .

[51]  C. Kummerow,et al.  An Evaluation of the Proposed Mechanism of the Adaptive Infrared Iris Hypothesis Using TRMM VIRS and PR Measurements , 2005 .

[52]  B. Soden,et al.  The Sensitivity of the Tropical-Mean Radiation Budget , 2005 .

[53]  J. Gregory,et al.  The Climate Sensitivity and Its Components Diagnosed from Earth Radiation Budget Data , 2005 .

[54]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[55]  Ka-Ming Lau,et al.  Warm rain processes over tropical oceans and climate implications , 2003 .

[56]  D. Hartmann,et al.  NO EVIDENCE FOR IRIS , 2002 .

[57]  B. Wielicki,et al.  The Iris Hypothesis: A Negative or Positive Cloud Feedback?. , 2002 .

[58]  R. Lindzen,et al.  Does The Earth Have an Adaptive Infrared Iris , 2013 .

[59]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[60]  Q. Fu,et al.  Tropical cirrus and water vapor: an effective Earth infrared iris feedback? , 2001 .

[61]  K. Emanuel,et al.  Equilibrium atmospheres of a two‐column radiative‐convective model , 1999 .

[62]  Kevin E. Trenberth,et al.  Atmospheric Moisture Residence Times and Cycling: Implications for Rainfall Rates and Climate Change , 1998 .

[63]  B. McAvaney,et al.  A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments , 1997 .

[64]  R. Newell,et al.  Decreased global rainfall during the past Ice Age , 1975, Nature.