On exchangeable random variables and the statistics of large graphs and hypergraphs
暂无分享,去创建一个
[1] B. De Finetti,et al. Funzione caratteristica di un fenomeno aleatorio , 1929 .
[2] B. D. Finetti. La prévision : ses lois logiques, ses sources subjectives , 1937 .
[3] L. J. Savage,et al. Symmetric measures on Cartesian products , 1955 .
[4] C. Ryll-Nardzewski. On stationary sequences of random variables and the de Finetti's equivalence , 1957 .
[5] H. Gaifman. Concerning measures in first order calculi , 1964 .
[6] Paul Erdős,et al. Some remarks on set theory. IX. Combinatorial problems in measure theory and set theory. , 1964 .
[7] Peter H. Krauss. Representation of Symmetric Probability Models , 1969, J. Symb. Log..
[8] John Haigh,et al. Random Equivalence Relations , 1972, J. Comb. Theory, Ser. A.
[9] R. Kopperman. Model theory and its applications , 1972 .
[10] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[11] R. Zimmer. Extensions of ergodic group actions , 1976 .
[12] Robert J. Zimmer,et al. Ergodic actions with generalized discrete spectrum , 1976 .
[13] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[14] J. Kingman. The Representation of Partition Structures , 1978 .
[15] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[16] J. Kingman. Uses of Exchangeability , 1978 .
[17] D. Aldous. Representations for partially exchangeable arrays of random variables , 1981 .
[18] Alexandr V. Kostochka. A class of constructions for turán’s (3, 4)-problem , 1982, Comb..
[19] Michel Talagrand,et al. Subgraphs of random graphs , 1985 .
[20] H. Furstenberg,et al. An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .
[21] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .
[22] D. Aldous. Exchangeability and related topics , 1985 .
[23] P. Wojtaszczyk. Banach Spaces For Analysts: Preface , 1991 .
[24] Olav Kallenberg,et al. Symmetries on random arrays and set-indexed processes , 1992 .
[25] Alexander Sidorenko,et al. What we know and what we do not know about Turán numbers , 1995, Graphs Comb..
[26] Ronitt Rubinfeld,et al. Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..
[27] V. Bergelson,et al. Ergodic Ramsey Theory–an Update , 1996 .
[28] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[29] Andreas Blass,et al. THE DESCRIPTIVE SET THEORY OF POLISH GROUP ACTIONS (LMS Lecture Note Series 232) By Howard Becker and Alexander S. Kechris: 136 pp., £21.95 (LMS Members' price £16.45), ISBN 0 521 57605 9 (Cambridge University Press, 1996). , 1998 .
[30] Noga Alon,et al. Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[31] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[32] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[33] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.
[34] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[35] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[36] Eli Glasner,et al. Ergodic Theory via Joinings , 2003 .
[37] Paul Erdös,et al. SOME REMARKS ON SET THEORY IV , 2004 .
[38] J. Michael Steele,et al. The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .
[39] G. Elek. On limits of finite graphs , 2005, math/0505335.
[40] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[41] O. Kallenberg. Probabilistic Symmetries and Invariance Principles , 2005 .
[42] Noga Alon,et al. A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[43] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[44] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[45] László Lovász,et al. Limits of dense graph sequences , 2004, J. Comb. Theory B.
[46] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[47] Terence Tao,et al. A Correspondence Principle between (hyper)graph Theory and Probability Theory, and the (hyper)graph Removal Lemma , 2006 .
[48] D. Aldous,et al. Processes on Unimodular Random Networks , 2006, math/0603062.
[49] Terence Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..
[50] László Lovász,et al. Graph limits and parameter testing , 2006, STOC '06.
[51] V. Rödl,et al. The counting lemma for regular k-uniform hypergraphs , 2006 .
[52] Alexander A. Razborov,et al. Flag algebras , 2007, Journal of Symbolic Logic.
[53] G. Elek. A Regularity Lemma for Bounded Degree Graphs and Its Applications: Parameter Testing and Infinite Volume Limits , 2007 .
[54] Gabor Elek,et al. Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard Approach , 2007, 0705.2179.
[55] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[56] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[57] S. Janson,et al. Graph limits and exchangeable random graphs , 2007, 0712.2749.
[58] O. Schramm. Hyperfinite graph limits , 2007, 0711.3808.
[59] Alexander A. Razborov,et al. On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.
[60] Noga Alon,et al. Every monotone graph property is testable , 2005, STOC '05.
[61] R. A. R. A Z B O R O V. On the minimal density of triangles in graphs , 2008 .
[62] P. Diaconis,et al. Graph limits and exchangeable random graphs , 2007, 0712.2749.
[63] Oded Schramm,et al. Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..
[64] Tim Austin. Razborov flag algebras as algebras of measurable functions , 2008, 0801.1538.
[65] Vojtech Rödl,et al. Generalizations of the removal lemma , 2009, Comb..
[66] 4 Exchangeability and conditional independence , 2009 .
[67] Terence Tao,et al. Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.