On exchangeable random variables and the statistics of large graphs and hypergraphs

De Finetti’s classical result of [18] identifying the law of an exchangeable family of random variables as a mixture of i.i.d. laws was extended to structure theorems for more complex notions of exchangeability by Aldous [1, 2, 3], Hoover [41, 42], Kallenberg [44] and Kingman [47]. On the other hand, such exchangeable laws were first related to questions from combinatorics in an independent analysis by Fremlin and Talagrand [29], and again more recently in Tao [62], where they appear as a natural proxy for the ‘leading order statistics’ of colourings of large graphs or hypergraphs. Moreover, this relation appears implicitly in the study of various more bespoke formalisms for handling ‘limit objects’ of sequences of dense graphs or hypergraphs in a number of recent works, including Lovasz and Szegedy [52], Borgs, Chayes, Lovasz, Sos, Szegedy and Vesztergombi [17], Elek and Szegedy [24] and Razborov [54, 55]. However, the connection between these works and the earlier probabilistic structural results seems to have gone largely unappreciated. In this survey we recall the basic results of the theory of exchangeable laws, and then explain the probabilistic versions of various interesting questions from graph and hypergraph theory that their connection motivates (particularly extremal questions on the testability of properties for graphs and hypergraphs). We also locate the notions of exchangeability of interest to us in the context of other classes of probability measures subject to various symmetries, in particular contrasting the methods employed to analyze exchangeable laws with related structural results in ergodic theory, particular the Furstenberg-Zimmer structure theorem for probability-preserving ℤ-systems, which underpins Furstenberg’s ergodic-theoretic proof of Szemeredi’s Theorem. The forthcoming paper [10] will make a much more elaborate appeal to the link between exchangeable laws and dense (directed) hypergraphs to establish various results in property testing.

[1]  B. De Finetti,et al.  Funzione caratteristica di un fenomeno aleatorio , 1929 .

[2]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[3]  L. J. Savage,et al.  Symmetric measures on Cartesian products , 1955 .

[4]  C. Ryll-Nardzewski On stationary sequences of random variables and the de Finetti's equivalence , 1957 .

[5]  H. Gaifman Concerning measures in first order calculi , 1964 .

[6]  Paul Erdős,et al.  Some remarks on set theory. IX. Combinatorial problems in measure theory and set theory. , 1964 .

[7]  Peter H. Krauss Representation of Symmetric Probability Models , 1969, J. Symb. Log..

[8]  John Haigh,et al.  Random Equivalence Relations , 1972, J. Comb. Theory, Ser. A.

[9]  R. Kopperman Model theory and its applications , 1972 .

[10]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[11]  R. Zimmer Extensions of ergodic group actions , 1976 .

[12]  Robert J. Zimmer,et al.  Ergodic actions with generalized discrete spectrum , 1976 .

[13]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[14]  J. Kingman The Representation of Partition Structures , 1978 .

[15]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[16]  J. Kingman Uses of Exchangeability , 1978 .

[17]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[18]  Alexandr V. Kostochka A class of constructions for turán’s (3, 4)-problem , 1982, Comb..

[19]  Michel Talagrand,et al.  Subgraphs of random graphs , 1985 .

[20]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .

[21]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .

[22]  D. Aldous Exchangeability and related topics , 1985 .

[23]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[24]  Olav Kallenberg,et al.  Symmetries on random arrays and set-indexed processes , 1992 .

[25]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[26]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[27]  V. Bergelson,et al.  Ergodic Ramsey Theory–an Update , 1996 .

[28]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[29]  Andreas Blass,et al.  THE DESCRIPTIVE SET THEORY OF POLISH GROUP ACTIONS (LMS Lecture Note Series 232) By Howard Becker and Alexander S. Kechris: 136 pp., £21.95 (LMS Members' price £16.45), ISBN 0 521 57605 9 (Cambridge University Press, 1996). , 1998 .

[30]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[31]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[32]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[33]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[34]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[35]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[36]  Eli Glasner,et al.  Ergodic Theory via Joinings , 2003 .

[37]  Paul Erdös,et al.  SOME REMARKS ON SET THEORY IV , 2004 .

[38]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[39]  G. Elek On limits of finite graphs , 2005, math/0505335.

[40]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[41]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[42]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[43]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[44]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[45]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[46]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[47]  Terence Tao,et al.  A Correspondence Principle between (hyper)graph Theory and Probability Theory, and the (hyper)graph Removal Lemma , 2006 .

[48]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[49]  Terence Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..

[50]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[51]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[52]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[53]  G. Elek A Regularity Lemma for Bounded Degree Graphs and Its Applications: Parameter Testing and Infinite Volume Limits , 2007 .

[54]  Gabor Elek,et al.  Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard Approach , 2007, 0705.2179.

[55]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[56]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[57]  S. Janson,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[58]  O. Schramm Hyperfinite graph limits , 2007, 0711.3808.

[59]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[60]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[61]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[62]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[63]  Oded Schramm,et al.  Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..

[64]  Tim Austin Razborov flag algebras as algebras of measurable functions , 2008, 0801.1538.

[65]  Vojtech Rödl,et al.  Generalizations of the removal lemma , 2009, Comb..

[66]  4 Exchangeability and conditional independence , 2009 .

[67]  Terence Tao,et al.  Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.