Spiers Memorial Lecture:. Progress and prospects of reticular chemistry.

Reticular chemistry, the linking of molecular building units by strong bonds to make crystalline, extended structures such as metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), and covalent organic frameworks (COFs), is currently one of the most rapidly expanding fields of science. In this contribution, we outline the origins of the field; the key intellectual and practical contributions, which have led to this expansion; and the new directions reticular chemistry is taking that are changing the way we think about making new materials and the manner with which we incorporate chemical information within structures to reach additional levels of functionality. This progress is described in the larger context of chemistry and unexplored, yet important, aspects of this field are presented.

[1]  Lei Wei,et al.  A dynamic three-dimensional covalent organic framework , 2017 .

[2]  Diego A. Gómez-Gualdrón,et al.  Bottom-up construction of a superstructure in a porous uranium-organic crystal , 2017, Science.

[3]  Ari S. Umans,et al.  Water harvesting from air with metal-organic frameworks powered by natural sunlight , 2017, Science.

[4]  Christopher A. Trickett,et al.  Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks. , 2017, Journal of the American Chemical Society.

[5]  O. Yaghi,et al.  Sequence-Dependent Materials. , 2017, Accounts of chemical research.

[6]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[7]  Seth M. Cohen The Postsynthetic Renaissance in Porous Solids. , 2017, Journal of the American Chemical Society.

[8]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[9]  Peter G. Boyd,et al.  Force-Field Prediction of Materials Properties in Metal-Organic Frameworks , 2016, The journal of physical chemistry letters.

[10]  J. Reimer,et al.  Chemical Conversion of Linkages in Covalent Organic Frameworks. , 2016, Journal of the American Chemical Society.

[11]  J. Hupp,et al.  Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000. , 2016, Journal of the American Chemical Society.

[12]  G. Somorjai,et al.  Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. , 2016, Nano letters.

[13]  S. Namuangruk,et al.  Manipulation of Amorphous-to-Crystalline Transformation: Towards the Construction of Covalent Organic Framework Hybrid Microspheres with NIR Photothermal Conversion Ability. , 2016, Angewandte Chemie.

[14]  Peyman Z. Moghadam,et al.  A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[15]  Qi Liu,et al.  Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[16]  L. Gu,et al.  Metal–organic frameworks as selectivity regulators for hydrogenation reactions , 2016, Nature.

[17]  D. Jiang,et al.  Covalent organic frameworks: a materials platform for structural and functional designs , 2016, Nature Reviews Materials.

[18]  Nathaniel L. Rosi,et al.  Establishing Porosity Gradients within Metal-Organic Frameworks Using Partial Postsynthetic Ligand Exchange. , 2016, Journal of the American Chemical Society.

[19]  Wei Wang,et al.  Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. , 2016, Journal of the American Chemical Society.

[20]  D. Pyles,et al.  Synthesis of Benzobisoxazole-Linked Two-Dimensional Covalent Organic Frameworks and Their Carbon Dioxide Capture Properties. , 2016, ACS macro letters.

[21]  Francis X. Greene,et al.  Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes , 2016, Nature Communications.

[22]  Qiang Zhang,et al.  Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts. , 2016, Angewandte Chemie.

[23]  James R. McKone,et al.  Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework , 2016, ACS central science.

[24]  C. Angell,et al.  Nanoporous Transparent MOF Glasses with Accessible Internal Surface. , 2016, Journal of the American Chemical Society.

[25]  H. Furukawa,et al.  High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. , 2016, Journal of the American Chemical Society.

[26]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[27]  H. Furukawa,et al.  Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal-Organic Framework Crystals. , 2016, Journal of the American Chemical Society.

[28]  Yu Cao,et al.  A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton , 2016 .

[29]  Rajamani Krishna,et al.  Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene , 2016, Science.

[30]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[31]  Johannes T. Margraf,et al.  Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks , 2016 .

[32]  Osami Sakata,et al.  Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. , 2016, Nature chemistry.

[33]  E. Miner,et al.  Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2 , 2016, Nature Communications.

[34]  Xiao Feng,et al.  A Solvent-Free Hot-Pressing Method for Preparing Metal-Organic-Framework Coatings. , 2016, Angewandte Chemie.

[35]  Yingbo Zhao,et al.  Covalent Chemistry beyond Molecules. , 2016, Journal of the American Chemical Society.

[36]  William R. Dichtel,et al.  Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. , 2016, Chemical communications.

[37]  M. Dincǎ,et al.  Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst , 2016, ACS Central Science.

[38]  O. Terasaki,et al.  Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.

[39]  Andreas M. Nyström,et al.  One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. , 2016, Journal of the American Chemical Society.

[40]  P. Trikalitis,et al.  Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH4 Storage. , 2016, Journal of the American Chemical Society.

[41]  T. Bein,et al.  From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach , 2015, Journal of the American Chemical Society.

[42]  Christopher A. Trickett,et al.  Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. , 2015, Journal of the American Chemical Society.

[43]  O. Yaghi,et al.  Chemistry of Covalent Organic Frameworks. , 2015, Accounts of chemical research.

[44]  D. Jiang,et al.  Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. , 2015, Nature chemistry.

[45]  P. Yang,et al.  Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. , 2015, Journal of the American Chemical Society.

[46]  Craig M. Brown,et al.  Methane storage in flexible metal–organic frameworks with intrinsic thermal management , 2015, Nature.

[47]  A. Vollmar,et al.  MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. , 2015, Chemical communications.

[48]  Qiaowei Li,et al.  Heterogeneity within a Mesoporous Metal-Organic Framework with Three Distinct Metal-Containing Building Units. , 2015, Journal of the American Chemical Society.

[49]  A. Emwas,et al.  MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage , 2015, Journal of the American Chemical Society.

[50]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[51]  F. Tezcan,et al.  A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. , 2015, Journal of the American Chemical Society.

[52]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[53]  G. Somorjai,et al.  Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[54]  Kelong Zhu,et al.  A molecular shuttle that operates inside a metal-organic framework. , 2015, Nature chemistry.

[55]  Christopher H. Hendon,et al.  Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O) , 2015, Journal of the American Chemical Society.

[56]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[57]  Kenji Sumida,et al.  Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. , 2015, Journal of the American Chemical Society.

[58]  Diego A. Gómez-Gualdrón,et al.  Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. , 2015, Journal of the American Chemical Society.

[59]  H. Furukawa,et al.  "Heterogeneity within order" in metal-organic frameworks. , 2015, Angewandte Chemie.

[60]  Qiang Zhang,et al.  Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[61]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[62]  Francis X. Greene,et al.  Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. , 2015, Journal of the American Chemical Society.

[63]  Jie Su,et al.  Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation , 2015, Nature Communications.

[64]  M. Head‐Gordon,et al.  Hydrogen physisorption on metal-organic framework linkers and metalated linkers: a computational study of the factors that control binding strength. , 2014, Journal of the American Chemical Society.

[65]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[66]  L. Weng,et al.  Ordered vacancies and their chemistry in metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[67]  H. Furukawa,et al.  Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. , 2014, Angewandte Chemie.

[68]  Y. Yue,et al.  Hybrid glasses from strong and fragile metal-organic framework liquids , 2014, Nature Communications.

[69]  Kyungsu Na,et al.  Superacidity in sulfated metal-organic framework-808. , 2014, Journal of the American Chemical Society.

[70]  Yushan Yan,et al.  Designed synthesis of large-pore crystalline polyimide covalent organic frameworks , 2014, Nature Communications.

[71]  David Farrusseng,et al.  Water adsorption in MOFs: fundamentals and applications. , 2014, Chemical Society reviews.

[72]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[73]  D. Truhlar,et al.  Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. , 2014, Nature chemistry.

[74]  Amy J. Cairns,et al.  Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks , 2014, Nature Chemistry.

[75]  S. Okajima,et al.  Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. , 2014, Journal of the American Chemical Society.

[76]  William R. Dichtel,et al.  Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. , 2014, Journal of the American Chemical Society.

[77]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[78]  T. Yildirim,et al.  A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. , 2014, Journal of the American Chemical Society.

[79]  H. Furukawa,et al.  High Methane Storage Capacity in Aluminum Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[80]  H. Furukawa,et al.  Water adsorption in porous metal-organic frameworks and related materials. , 2014, Journal of the American Chemical Society.

[81]  L. Chou,et al.  Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. , 2014, ACS nano.

[82]  Y. Liu,et al.  Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. , 2014, Journal of the American Chemical Society.

[83]  B. Lotsch,et al.  A hydrazone-based covalent organic framework for photocatalytic hydrogen production , 2014, 1401.3656.

[84]  S. Irle,et al.  Catalytic covalent organic frameworks via pore surface engineering. , 2014, Chemical communications.

[85]  R. Banerjee,et al.  Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. , 2013, Journal of the American Chemical Society.

[86]  S. Irle,et al.  Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds , 2013, Nature Communications.

[87]  A. Nagai,et al.  An azine-linked covalent organic framework. , 2013, Journal of the American Chemical Society.

[88]  William R. Dichtel,et al.  β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. , 2013, Journal of the American Chemical Society.

[89]  X. Bu,et al.  A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations. , 2013, Angewandte Chemie.

[90]  Jie Su,et al.  Single-crystal structure of a covalent organic framework. , 2013, Journal of the American Chemical Society.

[91]  William R. Dichtel,et al.  Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. , 2013, Journal of the American Chemical Society.

[92]  M. Dincǎ,et al.  Selective formation of biphasic thin films of metal–organic frameworks by potential-controlled cathodic electrodeposition , 2013 .

[93]  B. Smit,et al.  Mapping of Functional Groups in Metal-Organic Frameworks , 2013, Science.

[94]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[95]  Nathaniel L. Rosi,et al.  Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. , 2013, Journal of the American Chemical Society.

[96]  Shu Seki,et al.  Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (-Mn-S-)∞ chains and high intrinsic charge mobility. , 2013, Journal of the American Chemical Society.

[97]  K. Rissanen,et al.  X-ray analysis on the nanogram to microgram scale using porous complexes , 2013, Nature.

[98]  Xiao Feng,et al.  A squaraine-linked mesoporous covalent organic framework. , 2013, Angewandte Chemie.

[99]  T. Bein,et al.  A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. , 2013, Angewandte Chemie.

[100]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[101]  Teppei Yamada,et al.  Proton-conductive magnetic metal-organic frameworks, {NR3(CH2COOH)}[M(a)(II)M(b)(III)(ox)3]: effect of carboxyl residue upon proton conduction. , 2013, Journal of the American Chemical Society.

[102]  R. Banerjee,et al.  Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. , 2012, Journal of the American Chemical Society.

[103]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[104]  Zhangwen Wei,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[105]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[106]  J. Hupp,et al.  Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange , 2012 .

[107]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[108]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[109]  Zipeng Zhao,et al.  Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. , 2012, Journal of the American Chemical Society.

[110]  T. E. Reich,et al.  Targeted synthesis of a porous borazine-linked covalent organic framework. , 2012, Chemical communications.

[111]  G. Palmisano,et al.  Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. , 2012, Journal of the American Chemical Society.

[112]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[113]  X. Duan,et al.  Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. , 2012, Chemistry.

[114]  C. Janiak,et al.  MOFs for Use in Adsorption Heat Pump Processes , 2012 .

[115]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[116]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[117]  M. Dincǎ,et al.  Lattice-imposed geometry in metal–organic frameworks: lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+ , 2012 .

[118]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[119]  J. F. Stoddart,et al.  Metal-organic frameworks incorporating copper-complexed rotaxanes. , 2012, Angewandte Chemie.

[120]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[121]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[122]  J. Lee,et al.  Energy‐Efficient Dehumidification over Hierachically Porous Metal–Organic Frameworks as Advanced Water Adsorbents , 2012, Advanced materials.

[123]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[124]  Xiao Feng,et al.  Pore surface engineering in covalent organic frameworks. , 2011, Nature communications.

[125]  Yuan Zhang,et al.  Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. , 2011, Journal of the American Chemical Society.

[126]  William R. Dichtel,et al.  A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. , 2011, Journal of the American Chemical Society.

[127]  H. Kawasaki,et al.  Controlled self-assembly of metal-organic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures. , 2011, ACS applied materials & interfaces.

[128]  J. F. Stoddart,et al.  Covalent Organic Frameworks with High Charge Carrier Mobility , 2011 .

[129]  Michael O'Keeffe,et al.  Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. , 2011, Inorganic chemistry.

[130]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[131]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[132]  Christian J. Doonan,et al.  Crystalline covalent organic frameworks with hydrazone linkages. , 2011, Journal of the American Chemical Society.

[133]  K. Sada,et al.  SERS-Active Metal–Organic Frameworks Embedding Gold Nanorods , 2011 .

[134]  C. Hu,et al.  Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers. , 2011, Journal of the American Chemical Society.

[135]  Peter Behrens,et al.  Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. , 2011, Chemistry.

[136]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[137]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[138]  William R. Dichtel,et al.  Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene , 2011, Science.

[139]  S. Mayo,et al.  A new method to position and functionalize metal-organic framework crystals , 2011, Nature communications.

[140]  Stefan K. Henninger,et al.  Water Adsorption Characteristics of MIL‐101 for Heat‐Transformation Applications of MOFs , 2011 .

[141]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[142]  Elsje Alessandra Quadrelli,et al.  Synthesis and Stability of Tagged UiO-66 Zr-MOFs , 2010 .

[143]  Ronald A. Smaldone,et al.  Metal-organic frameworks from edible natural products. , 2010, Angewandte Chemie.

[144]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[145]  Pengyan Wu,et al.  Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. , 2010, Journal of the American Chemical Society.

[146]  J. F. Stoddart,et al.  A catenated strut in a catenated metal-organic framework. , 2010, Angewandte Chemie.

[147]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[148]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[149]  Takayoshi Ishimoto,et al.  A metal-organic framework as an electrocatalyst for ethanol oxidation. , 2010, Angewandte Chemie.

[150]  S. Kitagawa,et al.  Coordinatively immobilized monolayers on porous coordination polymer crystals. , 2010, Angewandte Chemie.

[151]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[152]  M. Allendorf,et al.  Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework , 2010 .

[153]  Guang Lu,et al.  Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. , 2010, Journal of the American Chemical Society.

[154]  S. Kitagawa,et al.  Highly Porous and Stable Coordination Polymers as Water Sorption Materials , 2010 .

[155]  Alexander J. Blake,et al.  Metal-organic polyhedral frameworks: high h(2) adsorption capacities and neutron powder diffraction studies. , 2010, Journal of the American Chemical Society.

[156]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[157]  G. Palmisano,et al.  Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs , 2010 .

[158]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[159]  Christian J. Doonan,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[160]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[161]  J. Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[162]  Y. Hwang,et al.  A large-surface-area boracite-network-topology porous MOF constructed from a conjugated ligand exhibiting a high hydrogen uptake capacity. , 2009, Inorganic chemistry.

[163]  S. Wan,et al.  A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. , 2009, Angewandte Chemie.

[164]  R. Marcus Interaction between Experiments, Analytical Theories, and Computation , 2009 .

[165]  Dan Zhao,et al.  Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. , 2009, Journal of the American Chemical Society.

[166]  S. Kitagawa,et al.  Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. , 2009, Angewandte Chemie.

[167]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[168]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[169]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[170]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[171]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[172]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[173]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[174]  Yong Yan,et al.  Exceptionally high H2 storage by a metal-organic polyhedral framework. , 2009, Chemical communications.

[175]  Christoph Janiak,et al.  MOFs as adsorbents for low temperature heating and cooling applications. , 2009, Journal of the American Chemical Society.

[176]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[177]  Scott R. Wilson,et al.  Covalent surface modification of a metal-organic framework: selective surface engineering via Cu(I)-catalyzed Huisgen cycloaddition. , 2008, Chemical communications.

[178]  S. Wan,et al.  A belt-shaped, blue luminescent, and semiconducting covalent organic framework. , 2008, Angewandte Chemie.

[179]  O. Yaghi,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[180]  François-Xavier Coudert,et al.  Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. , 2008, Journal of the American Chemical Society.

[181]  K. Lillerud,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[182]  H. Furukawa,et al.  Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. , 2008, Journal of the American Chemical Society.

[183]  F. Kapteijn,et al.  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina , 2008 .

[184]  Samuel J. Mugavero,et al.  Tailoring Microporosity in Covalent Organic Frameworks , 2008, Advanced materials.

[185]  J. Long,et al.  Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). , 2008, Journal of the American Chemical Society.

[186]  G. Richmond,et al.  Integration or segregation: how do molecules behave at oil/water interfaces? , 2008, Accounts of chemical research.

[187]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[188]  Didier Gigmes,et al.  Organized formation of 2D extended covalent organic frameworks at surfaces. , 2008, Journal of the American Chemical Society.

[189]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[190]  R. Marcus,et al.  Dielectric dispersion interpretation of single enzyme dynamic disorder, spectral diffusion, and radiative fluorescence lifetime. , 2008, The journal of physical chemistry. B.

[191]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[192]  F. Maley,et al.  Role of Y94 in proton and hydride transfers catalyzed by thymidylate synthase. , 2007, Biochemistry.

[193]  O. Shekhah,et al.  Step-by-step route for the synthesis of metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[194]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[195]  Zhenqiang Wang,et al.  Postsynthetic covalent modification of a neutral metal-organic framework. , 2007, Journal of the American Chemical Society.

[196]  Wenbin Lin,et al.  Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. , 2007, Journal of the American Chemical Society.

[197]  R. Fischer,et al.  Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth , 2007 .

[198]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[199]  T. Bein,et al.  Oriented growth of the metal organic framework Cu(3)(BTC)(2)(H(2)O)(3).xH(2)O tunable with functionalized self-assembled monolayers. , 2007, Journal of the American Chemical Society.

[200]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[201]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.

[202]  Yousung Jung,et al.  On the Theory of Organic Catalysis "on Water" , 2007 .

[203]  J. Warren,et al.  Reversible Concerted Ligand Substitution at Alternating Metal Sites in an Extended Solid , 2007, Science.

[204]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[205]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[206]  Sean Parkin,et al.  A mesoporous metal-organic framework with permanent porosity. , 2006, Journal of the American Chemical Society.

[207]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[208]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[209]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[210]  J. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006, Journal of the American Chemical Society.

[211]  J. C. Schön,et al.  "Design" in chemical synthesis--an illusion? , 2006, Angewandte Chemie.

[212]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[213]  V. Ostroverkhov,et al.  Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. , 2006, Chemical reviews.

[214]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[215]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[216]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[217]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[218]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[219]  C. Wöll,et al.  Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). , 2005, Journal of the American Chemical Society.

[220]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[221]  M. Finn,et al.  "On water": unique reactivity of organic compounds in aqueous suspension. , 2005, Angewandte Chemie.

[222]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[223]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[224]  J. Klinman,et al.  Structural bases of hydrogen tunneling in enzymes: progress and puzzles. , 2004, Current opinion in structural biology.

[225]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[226]  K. Lillerud,et al.  Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. , 2004, Chemical communications.

[227]  J. Klinman,et al.  Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases. , 2004, Journal of the American Chemical Society.

[228]  S. Benkovic,et al.  Tunneling and coupled motion in the Escherichia coli dihydrofolate reductase catalysis. , 2004, Journal of the American Chemical Society.

[229]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[230]  A. Kohen,et al.  Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction. , 2004, Biochemistry.

[231]  Song Gao,et al.  The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. , 2003, Chemistry.

[232]  G. Maglia,et al.  Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis. , 2003, Journal of the American Chemical Society.

[233]  Jie‐Peng Zhang,et al.  [Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology , 2003 .

[234]  Dunyi Liu,et al.  Paleoproterozoic lower crust beneath Nushan in Anhui Province: Evidence from zircon SHRIMP U-Pb dating on granulite xenoliths in Cenozoic alkali basalt , 2003 .

[235]  D. Zhao,et al.  Synthesis, morphology control, and properties of porous metal–organic coordination polymers , 2003 .

[236]  R. Doremus Viscosity of silica , 2002 .

[237]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[238]  X. You,et al.  [Co5(im)10⋅2 MB]∞: A Metal‐Organic Open‐Framework with Zeolite‐Like Topology , 2002 .

[239]  Judith P Klinman,et al.  Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. , 2002, Journal of the American Chemical Society.

[240]  M. O'keeffe,et al.  Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type , 2002 .

[241]  M. O'keeffe,et al.  Infinite secondary building units and forbidden catenation in metal-organic frameworks. , 2002, Angewandte Chemie.

[242]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[243]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[244]  N. Masciocchi,et al.  Extended polymorphism in copper(II) imidazolate polymers: a spectroscopic and XRPD structural study. , 2001, Inorganic chemistry.

[245]  M. Sutcliffe,et al.  Deuterium Isotope Effects during Carbon–Hydrogen Bond Cleavage by Trimethylamine Dehydrogenase , 2001, The Journal of Biological Chemistry.

[246]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[247]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[248]  G. Fabriàs,et al.  Is Hydrogen Tunneling Involved in AcylCoA Desaturase Reactions? The Case of a Δ9 Desaturase That Transforms (E)‐11‐Tetradecenoic Acid into (Z,E)‐9,11‐Tetradecadienoic Acid , 2000 .

[249]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[250]  Ian D. Williams,et al.  Cooperative magnetic behavior in the coordination polymers [Cu3(TMA)2L3] (L=H2O, pyridine) , 2000 .

[251]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[252]  M. Sutcliffe,et al.  Kinetic studies of the mechanism of carbon-hydrogen bond breakage by the heterotetrameric sarcosine oxidase of Arthrobacter sp. 1-IN. , 2000, Biochemistry.

[253]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[254]  Stephen Mann,et al.  Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization , 1999, Nature.

[255]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[256]  Amnon Kohen,et al.  Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase , 1999, Nature.

[257]  Robert C. Thompson,et al.  Iron(II) 2-methylimidazolate and copper(II) 1,2,4-triazolate complexes: systems exhibiting long-range ferromagnetic ordering at low temperatures , 1999 .

[258]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[259]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[260]  S. Kitagawa,et al.  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[261]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[262]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[263]  J. Wilson,et al.  Hydrophobic hydration of methane , 1997 .

[264]  Chao-Ping Hsu,et al.  Time-Dependent Stokes Shift and Its Calculation from Solvent Dielectric Dispersion Data , 1997 .

[265]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[266]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[267]  Graham R. Fleming,et al.  Femtosecond solvation dynamics of water , 1994, Nature.

[268]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[269]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[270]  R. Hoffmann HOW SHOULD CHEMISTS THINK , 1993 .

[271]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .

[272]  Reizo Kato,et al.  Crystal and electronic structures of conductive anion-radical salts, (2,5-R1R2-DCNQI)2Cu (DCNQI = N,N'-dicyanoquinonediimine; R1, R2 = CH3, CH3O, Cl, Br) , 1989 .

[273]  R. Kuroda,et al.  Novel Clathrate Compound of Cadmium Cyanide Host with an Adamantane-like Cavity. Cadmium Cyanide-Carbon Tetrachloride(1/1) , 1988 .

[274]  R. A. Kuharski,et al.  Molecular model for aqueous ferrous–ferric electron transfer , 1988 .

[275]  Gerhard Klebe,et al.  A Radical Anion Salt of 2,5‐Dimethyl‐N,N′‐dicyanoquinonediimine with Extremely High Electrical Conductivity , 1986 .

[276]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[277]  Morgan Y. Chen,et al.  The application of Marcus-like equations to processes which have no corresponding identity reactions. Separation of thermodynamic and intrinsic contributions to barriers to internal rotation and conformational rearrangements , 1984 .

[278]  J. Donnella,et al.  Application of Marcus-like equations to group-transfer reactions: a theoretical test of intrinsic barrier additivity and the squarë relationship , 1984 .

[279]  E. Lewis,et al.  Methyl transfers. 8. The Marcus equation and transfers between arenesulfonates , 1984 .

[280]  Arieh Warshel,et al.  Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions , 1982 .

[281]  H. Schlegel,et al.  Theoretical studies of SN2 transition states. 2. Intrinsic barriers, rate-equilibrium relationships, and the Marcus equation , 1981 .

[282]  Ronald Breslow,et al.  Hydrophobic acceleration of Diels-Alder reactions , 1980 .

[283]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[284]  J. Karle,et al.  Crystal structure of a versatile organic clathrate. 4-p-Hydroxyphenyl-2,2,4-trimethylchroman (Dianin's compound) , 1970 .

[285]  Rudolph A. Marcus,et al.  Theoretical relations among rate constants, barriers, and Broensted slopes of chemical reactions , 1968 .

[286]  N. Sutin,et al.  The Kinetics of Inorganic Reactions in Solution , 1966 .

[287]  N. Sutin,et al.  The Reactions of Isothiocyanatobis(ethylenediamine)cobalt(III) Complexes with Chromium(II) and the Linkage Isomerization of the Monothiocyanate Complex of Chromium(III)1 , 1966 .

[288]  Rudolph A. Marcus,et al.  On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions , 1965 .

[289]  I. Matsubara,et al.  The Crystal Structure of Bis( glutaronitrilo)copper(I) Nitrate , 1959 .

[290]  Yoshihiko Saito,et al.  The Crystal Structure of Bis(adiponitrilo)copper(I) Nitrate , 1959 .

[291]  I. Matsubara,et al.  The Crystal Structure of Bis(succinonitrilo)copper(I) Nitrate , 1959 .

[292]  J. H. Rayner,et al.  Clathrate Compound Formed by Benzene with an Ammonia–Nickel Cyanide Complex , 1949, Nature.

[293]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[294]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .

[295]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[296]  D. Cram,et al.  Container Molecules And Their Guests , 1994 .

[297]  R. M. Barrer,et al.  Dianin's compound as a zeolitic sorbent , 1976 .

[298]  J. Lehn,et al.  Cryptates—X: Syntheses et proprietes physiques de systemes diaza-polyoxa-macrobicycliques , 1973 .

[299]  D. Schwarzenbach,et al.  Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O , 1972 .

[300]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[301]  R. M. Barrer,et al.  Sorption in the β-phases of transition metal(II) tetra-(4-methylpyridine) thiocyanates and related compounds , 1969 .

[302]  R. Marcus Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.—A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt , 1960 .

[303]  J. H. Rayner,et al.  67. Structure of molecular compounds. Part X. Crystal structure of the compound of benzene with an ammonia–nickel cyanide complex , 1952 .

[304]  K. A. Hofmann,et al.  Verbindungen von Kohlenwasserstoffen mit Metallsalzen , 1897 .