Branch and bound for informative path planning

We present an optimal algorithm for informative path planning (IPP), using a branch and bound method inspired by feature selection algorithms. The algorithm uses the monotonicity of the objective function to give an objective function-dependent speedup versus brute force search. We present results which suggest that when maximizing variance reduction in a Gaussian process model, the speedup is significant.

[1]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[2]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[3]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[4]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[5]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  Josef Kittler,et al.  Fast branch & bound algorithms for optimal feature selection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[8]  Chandra Chekuri,et al.  A recursive greedy algorithm for walks in directed graphs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[9]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[10]  Gamini Dissanayake,et al.  Probabilistic Search for a Moving Target in an Indoor Environment , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Pierre F. J. Lermusiaux,et al.  Nonlinear optimization of autonomous undersea vehicle sampling strategies for oceanographic data-assimilation , 2007, J. Field Robotics.

[12]  Pierre F. J. Lermusiaux,et al.  Adaptive modeling, adaptive data assimilation and adaptive sampling , 2007 .

[13]  N.M. Patrikalakis,et al.  Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling Using Mixed Integer Linear Programming , 2008, IEEE Journal of Oceanic Engineering.

[14]  Abhimanyu Das,et al.  Algorithms for subset selection in linear regression , 2008, STOC.

[15]  H. B. McMahan,et al.  Robust Submodular Observation Selection , 2008 .

[16]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[17]  Geoffrey A. Hollinger,et al.  Proofs and Experiments in Scalable, Near-Optimal Search by Multiple Robots , 2008, Robotics: Science and Systems.

[18]  Ding Wang,et al.  Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment , 2009 .

[19]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[20]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[21]  Gaurav S. Sukhatme,et al.  Informative path planning for an autonomous underwater vehicle , 2010, 2010 IEEE International Conference on Robotics and Automation.