Optical Flow and Trajectory Methods in Context

In this chapter we study the related fields of multi-frame optical flow and trajectories. Since the beginning of modern optical flow estimation methods, multiple frames have been used in an effort to improve the motion computation. We look at why most of these efforts have failed. More recently, researchers have stitched together sequences of optical flow fields to create trajectories. These trajectories are temporally coherent, a necessary property for virtually every real-world application of optical flow. New methods compute these trajectories directly using variational methods and low-rank constraints. We also identify the need for appropriate data sets and evaluation methods for this nascent field.

[1]  Henning Zimmer,et al.  Modeling temporal coherence for optical flow , 2011, 2011 International Conference on Computer Vision.

[2]  Carlo Tomasi,et al.  Simultaneous Compaction and Factorization of Sparse Image Motion Matrices , 2012, ECCV.

[3]  Ajit Singh,et al.  Incremental estimation of image-flow using a Kalman filter , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[4]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[5]  Patrick Pérez,et al.  From optical flow to dense long term correspondences , 2012, 2012 19th IEEE International Conference on Image Processing.

[6]  Hans-Hellmut Nagel,et al.  Extending the 'Oriented Smoothness Constraint' into the Temporal Domain and the Estimation of Derivatives of Optical Flow , 1990, ECCV.

[7]  Agustín Salgado,et al.  Temporal constraints in large optical flow estimation , 2007 .

[8]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[9]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[10]  T. M. Chin,et al.  Probabilistic and sequential computation of optical flow using temporal coherence , 1994, IEEE Trans. Image Process..

[11]  Carlo Tomasi,et al.  Dense Lagrangian motion estimation with occlusions , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Lourdes Agapito,et al.  A Variational Approach to Video Registration with Subspace Constraints , 2013, International Journal of Computer Vision.

[13]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[14]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Michael J. Black Recursive Non-Linear Estimation of Discontinuous Flow Fields , 1994, ECCV.

[16]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[17]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[19]  Michal Irani,et al.  Multi-Frame Correspondence Estimation Using Subspace Constraints , 2002, International Journal of Computer Vision.

[20]  Carlo Tomasi,et al.  Video Motion for Every Visible Point , 2013, 2013 IEEE International Conference on Computer Vision.

[21]  Susanna Ricco,et al.  Video Motion: Finding Complete Motion Paths for Every Visible Point , 2013 .

[22]  Matthew Brand,et al.  Morphable 3D models from video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Kurt Keutzer,et al.  Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow , 2010, ECCV.

[24]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Daniel Rueckert,et al.  Dense Multi-frame Optic Flow for Non-rigid Objects Using Subspace Constraints , 2010, ACCV.

[26]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[27]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[28]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Michael Elad,et al.  Recursive Optical Flow Estimation - Adaptive Filtering Approach , 1998, J. Vis. Commun. Image Represent..

[30]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[32]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[33]  Michael J. Black,et al.  Robust dynamic motion estimation over time , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[35]  Markus Gross,et al.  Practical temporal consistency for image-based graphics applications , 2012, ACM Trans. Graph..

[36]  Ce Liu,et al.  Towards Longer Long-Range Motion Trajectories , 2012, BMVC.