Kernel-based feature aggregation framework in point cloud networks

[1]  Xiyan Liu,et al.  Progressive generation of 3D point clouds with hierarchical consistency , 2023, Pattern Recognit..

[2]  Chenglu Wen,et al.  DeepSIR: Deep semantic iterative registration for LiDAR point clouds , 2023, Pattern Recognit..

[3]  Z. Lian,et al.  Learning isometry-invariant representations for point cloud analysis , 2022, Pattern Recognit..

[4]  Zongben Xu,et al.  Meta-learning-based adversarial training for deep 3D face recognition on point clouds , 2022, Pattern Recognit..

[5]  K. Jia,et al.  Classification of single-view object point clouds , 2020, Pattern Recognit..

[6]  Zehua Liu,et al.  VFMVAC: View-filtering-based multi-view aggregating convolution for 3D shape recognition and retrieval , 2022, Pattern Recognit..

[7]  Huan Wang,et al.  Continuous Conditional Random Field Convolution for Point Cloud Segmentation , 2021, Pattern Recognit..

[8]  Y. Wang,et al.  Learning of 3D Graph Convolution Networks for Point Cloud Analysis , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Piotr Koniusz,et al.  Power Normalizations in Fine-Grained Image, Few-Shot Image and Graph Classification , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Wanquan Liu,et al.  A novel GCN-based point cloud classification model robust to pose variances , 2022, Pattern Recognit..

[11]  Zhouhui Lian,et al.  BoW Pooling: A Plug-and-Play Unit for Feature Aggregation of Point Clouds , 2021, AAAI.

[12]  Jialie Shen,et al.  BBAS: Towards large scale effective ensemble adversarial attacks against deep neural network learning , 2020, Inf. Sci..

[13]  Ralph R. Martin,et al.  PCT: Point cloud transformer , 2020, Computational Visual Media.

[14]  Klaus Dietmayer,et al.  Point Transformer , 2020, IEEE Access.

[15]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[16]  Wanqing Li,et al.  Beyond Covariance: SICE and Kernel Based Visual Feature Representation , 2020, International Journal of Computer Vision.

[17]  Zheng Zhang,et al.  A Closer Look at Local Aggregation Operators in Point Cloud Analysis , 2020, ECCV.

[18]  Zhuguo Li,et al.  PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks With Adaptive Sampling , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Qing Li,et al.  Point2Node: Correlation Learning of Dynamic-Node for Point Cloud Feature Modeling , 2019, AAAI.

[20]  U. Neumann,et al.  Grid-GCN for Fast and Scalable Point Cloud Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Mingtao Feng,et al.  Point Attention Network for Semantic Segmentation of 3D Point Clouds , 2019, Pattern Recognit..

[22]  Chi-Wing Fu,et al.  PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  Shiming Xiang,et al.  Relation-Shape Convolutional Neural Network for Point Cloud Analysis , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Jing Hua,et al.  A-CNN: Annularly Convolutional Neural Networks on Point Clouds , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Fuxin Li,et al.  PointConv: Deep Convolutional Networks on 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Matthias Zwicker,et al.  Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network , 2018, AAAI.

[30]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[31]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[32]  Anath Fischer,et al.  3DmFV: Three-Dimensional Point Cloud Classification in Real-Time Using Convolutional Neural Networks , 2018, IEEE Robotics and Automation Letters.

[33]  Ye Duan,et al.  PointGrid: A Deep Network for 3D Shape Understanding , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Vladlen Koltun,et al.  Tangent Convolutions for Dense Prediction in 3D , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Subhransu Maji,et al.  Bilinear Convolutional Neural Networks for Fine-Grained Visual Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Sainan Liu,et al.  Attentional ShapeContextNet for Point Cloud Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[37]  Gim Hee Lee,et al.  PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[38]  Yifan Xu,et al.  SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters , 2018, ECCV.

[39]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[40]  Jiaxin Li,et al.  SO-Net: Self-Organizing Network for Point Cloud Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Ulrich Neumann,et al.  Recurrent Slice Networks for 3D Segmentation of Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Binh-Son Hua,et al.  Pointwise Convolutional Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Lei Wang,et al.  DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition , 2017, ECCV.

[45]  Bastian Leibe,et al.  Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[46]  Jiajun Wu,et al.  Synthesizing 3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[48]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[49]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[50]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[51]  Leonidas J. Guibas,et al.  SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[56]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Lei Wang,et al.  Beyond Covariance: Feature Representation with Nonlinear Kernel Matrices , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[60]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[61]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[62]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[63]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[65]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[66]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[67]  Rama Chellappa,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Matching Shape Sequences in Video with Applications in Human Movement Analysis. Ieee Transactions on Pattern Analysis and Machine Intelligence 2 , 2022 .