Maximizing the Number of Spanning Trees in a Connected Graph

We study the problem of maximizing the number of spanning trees in a connected graph with <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> vertices and <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> edges, by adding at most <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> edges from a given set of <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> candidate edges, a problem that has applications in many domains. We give both algorithmic and hardness results for this problem: 1) We give a greedy algorithm that obtains an approximation ratio of <inline-formula> <tex-math notation="LaTeX">$(1 - 1/e - \epsilon)$ </tex-math></inline-formula> in the exponent of the number of spanning trees for any <inline-formula> <tex-math notation="LaTeX">$\epsilon > 0$ </tex-math></inline-formula> in time <inline-formula> <tex-math notation="LaTeX">$\widetilde {O}(m \epsilon ^{-1} + (n + q) \epsilon ^{-3})$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\widetilde {O}(\cdot)$ </tex-math></inline-formula> hides <inline-formula> <tex-math notation="LaTeX">${\mathrm{ poly}}\log (n)$ </tex-math></inline-formula> factors. Our running time is optimal with respect to the input size, up to logarithmic factors, and improves on the <inline-formula> <tex-math notation="LaTeX">$O(n^{3})$ </tex-math></inline-formula> running time of the previous proposed greedy algorithm with an approximation ratio <inline-formula> <tex-math notation="LaTeX">$(1 - 1/e)$ </tex-math></inline-formula> in the exponent. Notably, the independence of our running time of <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> is novel, compared to conventional top-<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> selections on graphs that usually run in <inline-formula> <tex-math notation="LaTeX">$\Omega (mk)$ </tex-math></inline-formula> time. 2) We show the exponential inapproximability of this problem by proving that there exists a constant <inline-formula> <tex-math notation="LaTeX">$c > 0$ </tex-math></inline-formula> such that it is NP-hard to approximate the optimum number of spanning trees in the exponent within <inline-formula> <tex-math notation="LaTeX">$(1 - c)$ </tex-math></inline-formula>.

[1]  Richard Peng,et al.  Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle Decompositions , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[2]  Mohit Singh,et al.  Maximizing determinants under partition constraints , 2016, STOC.

[3]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[4]  Yuichi Yoshida,et al.  Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches , 2014, KDD.

[5]  Wendy Myrvold Reliable Network Synthesis: Some Recent Developments , 1996 .

[6]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[7]  Mohamed El Marraki,et al.  Enumeration of spanning trees in a closed chain of fan and wheel , 2014 .

[8]  Yihong Gong,et al.  Incremental spectral clustering by efficiently updating the eigen-system , 2010, Pattern Recognit..

[9]  Charles J. Colbourn,et al.  The Combinatorics of Network Reliability , 1987 .

[10]  John S. Baras,et al.  Efficient and robust communication topologies for distributed decision making in networked systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[11]  John Peebles,et al.  Sampling random spanning trees faster than matrix multiplication , 2016, STOC.

[12]  Charles L. Suffel,et al.  On the characterization of graphs with maximum number of spanning trees , 1998, Discret. Math..

[13]  Malik Magdon-Ismail,et al.  Exponential Inapproximability of Selecting a Maximum Volume Sub-matrix , 2011, Algorithmica.

[14]  Richard Peng,et al.  Current Flow Group Closeness Centrality for Complex Networks? , 2018, WWW.

[15]  Christian Borgs,et al.  Maximizing Social Influence in Nearly Optimal Time , 2012, SODA.

[16]  M. Randic,et al.  Resistance distance , 1993 .

[17]  D. R. Shier,et al.  Maximizing the number of spanning trees in a graph with n nodes and m edges , 1974 .

[18]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[19]  Guifang Wang A proof of Boesch's conjecture , 1994, Networks.

[20]  Gaurav S. Sukhatme,et al.  Designing Sparse Reliable Pose-Graph SLAM: A Graph-Theoretic Approach , 2016, WAFR.

[21]  Gamini Dissanayake,et al.  Tree-connectivity: Evaluating the graphical structure of SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Nikhil Srivastava,et al.  Graph Sparsification by Effective Resistances , 2011, SIAM J. Comput..

[23]  V.V.B. Rao,et al.  Most-vital edge of a graph with respect to spanning trees , 1998 .

[24]  Yuanzhi Li,et al.  Near-optimal discrete optimization for experimental design: a regret minimization approach , 2017, Mathematical Programming.

[25]  Milad Siami,et al.  Schur-convex robustness measures in dynamical networks , 2014, 2014 American Control Conference.

[26]  Aleksandar Nikolov Randomized Rounding for the Largest Simplex Problem , 2015, STOC.

[27]  Shang-Hua Teng,et al.  Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems , 2006, SIAM J. Matrix Anal. Appl..

[28]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[29]  R. Wilkov,et al.  Analysis and Design of Reliable Computer Networks , 1972, IEEE Trans. Commun..

[30]  Xiaoming Li,et al.  On the existence of uniformly optimally reliable networks , 1991, Networks.

[31]  Wendy Myrvold,et al.  Maximizing spanning trees in almost complete graphs , 1997 .

[32]  G. Miller,et al.  Solving Sdd Linear Systems in Time˜o , 2022 .

[33]  Mehran Mesbahi,et al.  Network entropy: A system-theoretic perspective , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[34]  Nisheeth K. Vishnoi,et al.  Subdeterminant Maximization via Nonconvex Relaxations and Anti-Concentration , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[35]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[36]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[37]  Richard Peng,et al.  Determinant-Preserving Sparsification of SDDM Matrices with Applications to Counting and Sampling Spanning Trees , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[38]  John Lygeros,et al.  On Submodularity and Controllability in Complex Dynamical Networks , 2014, IEEE Transactions on Control of Network Systems.

[39]  Leonid Khachiyan,et al.  On the Complexity of Approximating Extremal Determinants in Matrices , 1995, J. Complex..

[40]  Mohit Singh,et al.  Approximation Algorithms for D-optimal Design , 2018, Math. Oper. Res..

[41]  Zhongzhi Zhang,et al.  Kirchhoff Index as a Measure of Edge Centrality in Weighted Networks: Nearly Linear Time Algorithms , 2017, SODA.

[42]  José Rodríguez,et al.  A new technique for the characterization of graphs with a maximum number of spanning trees , 2002, Discret. Math..

[43]  Taehan Lee,et al.  Spanning tree approach in all-terminal network reliability expansion , 2001, Comput. Commun..

[44]  G. Dissanayake,et al.  Good , Bad and Ugly Graphs for SLAM , 2015 .

[45]  Richard Peng,et al.  Faster Spectral Sparsification and Numerical Algorithms for SDD Matrices , 2012, ACM Trans. Algorithms.

[46]  Stephen P. Boyd,et al.  Growing Well-connected Graphs , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[47]  Magnus Egerstedt,et al.  Graph-theoretic connectivity control of mobile robot networks , 2011, Proceedings of the IEEE.

[48]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[49]  Ting-Yi Sung,et al.  Finding the most vital edges with respect to the number of spanning trees , 1994 .

[50]  Gaurav S. Sukhatme,et al.  Maximizing the Weighted Number of Spanning Trees: Near-$t$-Optimal Graphs , 2016, ArXiv.

[51]  Yuanzhi Li,et al.  Near-Optimal Design of Experiments via Regret Minimization , 2017, ICML.

[52]  Amin Saberi,et al.  Subgraph sparsification and nearly optimal ultrasparsifiers , 2009, STOC '10.

[53]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[54]  Sushant Sachdeva,et al.  Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[55]  Marek Karpinski,et al.  Approximation Hardness of TSP with Bounded Metrics , 2001, ICALP.

[56]  Richard Peng,et al.  Fully Dynamic Effective Resistances , 2018, ArXiv.

[57]  Richard Peng,et al.  Fully dynamic spectral vertex sparsifiers and applications , 2019, STOC.

[58]  Ching-Shui Cheng,et al.  Maximizing the total number of spanning trees in a graph: Two related problems in graph theory and optimum design theory , 1981, J. Comb. Theory B.

[59]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[60]  Yin Tat Lee,et al.  An SDP-based algorithm for linear-sized spectral sparsification , 2017, STOC.

[61]  Eli Upfal,et al.  Scalable Betweenness Centrality Maximization via Sampling , 2016, KDD.

[62]  Milad Siami,et al.  Growing Linear Dynamical Networks Endowed by Spectral Systemic Performance Measures , 2018, IEEE Transactions on Automatic Control.

[63]  Ioannis Koutis,et al.  Parameterized complexity and improved inapproximability for computing the largest j-simplex in a V-polytope , 2006, Inf. Process. Lett..

[64]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[65]  Friedrich Eisenbrand,et al.  On largest volume simplices and sub-determinants , 2014, SODA.

[66]  Richard Peng,et al.  On Fully Dynamic Graph Sparsifiers , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[67]  Aaron Schild,et al.  An almost-linear time algorithm for uniform random spanning tree generation , 2017, STOC.

[68]  Huy L. Nguyen,et al.  A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack Constraint , 2019, ICALP.

[69]  Divyakant Agrawal,et al.  Limiting the spread of misinformation in social networks , 2011, WWW.

[70]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[71]  Frank Allgöwer,et al.  Performance and design of cycles in consensus networks , 2013, Syst. Control. Lett..

[72]  Jakub W. Pachocki,et al.  Solving SDD linear systems in nearly mlog1/2n time , 2014, STOC.

[73]  Alexander Kelmans On graphs with the maximum number of spanning trees , 1996 .

[74]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.