Computational geometric tools for quantitative comparison of locomotory behavior

A fundamental challenge for behavioral neuroscientists is to accurately quantify (dis)similarities in animal behavior without excluding inherent variability present between individuals. We explored two new applications of curve and shape alignment techniques to address this issue. As a proof-of-concept we applied these methods to compare normal or alarmed behavior in pairs of medaka (Oryzias latipes). The curve alignment method we call Behavioral Distortion Distance (BDD) revealed that alarmed fish display less predictable swimming over time, even if individuals incorporate the same action patterns like immobility, sudden changes in swimming trajectory, or changing their position in the water column. The Conformal Spatiotemporal Distance (CSD) technique on the other hand revealed that, in spite of the unpredictability, alarmed individuals exhibit lower variability in overall swim patterns, possibly accounting for the widely held notion of “stereotypy” in alarm responses. More generally, we propose that these new applications of established computational geometric techniques are useful in combination to represent, compare, and quantify complex behaviors consisting of common action patterns that differ in duration, sequence, or frequency.

[1]  A. Büschges,et al.  Natural neural output that produces highly variable locomotory movements. , 2006, Journal of neurophysiology.

[2]  S. Nordell The response of female guppies, Poecilia reticulata, to chemical stimuli from injured conspecifics , 1998, Environmental Biology of Fishes.

[3]  R. J. Smith,et al.  A re‐evaluation of the effect of shoalmate familiarity on the proliferation of alarm substance cells in ostariophysan fishes , 1998 .

[4]  P. Giaquinto,et al.  Blood Cues Induce Antipredator Behavior in Nile Tilapia Conspecifics , 2013, PloS one.

[5]  R. Greevy,et al.  Introduction to Permutation and Resampling-Based Hypothesis Tests* , 2009, Journal of clinical child and adolescent psychology : the official journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53.

[6]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[7]  K. Døving,et al.  The Alarm Reaction in Fishes—Odorants, Modulations of Responses, Neural Pathways , 2009, Annals of the New York Academy of Sciences.

[8]  A. Mathuru Conspecific injury raises an alarm in medaka , 2016, Scientific Reports.

[9]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[10]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[11]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[12]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[13]  Huu Le,et al.  Conformal Surface Alignment with Optimal Möbius Search , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Lance G. Barrett-Lennard,et al.  Call diversity in the North Pacific killer whale populations: implications for dialect evolution and population history , 2012, Animal Behaviour.

[15]  Y. Benjamini,et al.  Generative rules of Drosophila locomotor behavior as a candidate homology across phyla , 2016, Scientific Reports.

[16]  W. Pfeiffer The Distribution of Fright Reaction and Alarm Substance Cells in Fishes , 1977 .

[17]  L. Avery,et al.  The Geometry of Locomotive Behavioral States in C. elegans , 2013, PloS one.

[18]  Earl Hunt,et al.  REVIEW AND PROSPECTUS , 1975 .

[19]  R. Friedrich,et al.  Chondroitin Fragments Are Odorants that Trigger Fear Behavior in Fish , 2012, Current Biology.

[20]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[21]  Randall Wells,et al.  Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members , 2004, Animal Cognition.

[22]  Eve Marder,et al.  Animal-to-Animal Variability in Motor Pattern Production in Adults and during Growth , 2005, The Journal of Neuroscience.

[23]  E. Marder Variability, compensation, and modulation in neurons and circuits , 2011, Proceedings of the National Academy of Sciences.

[24]  W M Schleidt,et al.  How "fixed" is the fixed action pattern? , 2010, Zeitschrift fur Tierpsychologie.

[25]  J. R. Simms Quantification of behavior. , 1983, Behavioral science.

[26]  S. Jesuthasan,et al.  The Alarm Response in Zebrafish: Innate Fear in a Vertebrate Genetic Model , 2008, Journal of neurogenetics.

[27]  山下 靖,et al.  THE UNIFORMATION THEOREM FOR CIRCLE PACKINGS , 1995 .

[28]  Cesare Furlanello,et al.  mlpy: Machine Learning Python , 2012, ArXiv.

[29]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[30]  Meinard Müller,et al.  Information retrieval for music and motion , 2007 .

[31]  G. D. de Polavieja,et al.  Ontogeny of collective behavior reveals a simple attraction rule , 2017, Proceedings of the National Academy of Sciences.

[32]  Lipman Bers,et al.  Uniformization, Moduli, and Kleinian Groups , 1972 .

[33]  M. Clairaut Recherches sur les courbes à double courbure , 1969 .

[34]  D. Chivers,et al.  Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus , 1998 .

[35]  M. C. Ferrari,et al.  Chemical ecology of predator – prey interactions in aquatic ecosystems : a review and prospectus 1 , 2010 .

[36]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[37]  Aravinthan D. T. Samuel,et al.  Temporal analysis of stochastic turning behavior of swimming C. elegans. , 2009, Journal of neurophysiology.

[38]  Patrice Koehl,et al.  Comparing shapes of genus-zero surfaces , 2017, J. Appl. Comput. Topol..

[39]  A. Pouget,et al.  Not Noisy, Just Wrong: The Role of Suboptimal Inference in Behavioral Variability , 2012, Neuron.

[40]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[41]  Benjamin L de Bivort,et al.  Behavioral idiosyncrasy reveals genetic control of phenotypic variability , 2014, Proceedings of the National Academy of Sciences.

[42]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[43]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[44]  A. Marqueze,et al.  Behavioral responses of zebrafish depend on the type of threatening chemical cues , 2016, Journal of Comparative Physiology A.

[45]  Joachim Gudmundsson,et al.  Computational Movement Analysis , 2012, Springer Handbook of Geographic Information.

[46]  L. Fuselier,et al.  Anti-predator behaviour in response to conspecific chemical alarm cues in an esociform fish, Umbra limi (Kirtland 1840) , 2008, Environmental Biology of Fishes.

[47]  K. Frisch,et al.  Zur Psychologie des Fisch-Schwarmes , 1938, Naturwissenschaften.

[48]  Kristin Branson,et al.  JAABA: interactive machine learning for automatic annotation of animal behavior , 2013, Nature Methods.

[49]  Jun Wang,et al.  Generalizing DTW to the multi-dimensional case requires an adaptive approach , 2016, Data Mining and Knowledge Discovery.

[50]  P. Koehl,et al.  Landmark-free geometric methods in biological shape analysis , 2015, Journal of The Royal Society Interface.

[51]  Ginevra Castellano,et al.  Recognising Human Emotions from Body Movement and Gesture Dynamics , 2007, ACII.

[52]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[53]  R. Yuste,et al.  Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire , 2018, eLife.

[54]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Sen Wang,et al.  Conformal Geometry and Its Applications on 3D Shape Matching, Recognition, and Stitching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  William Bialek,et al.  Mapping the stereotyped behaviour of freely moving fruit flies , 2013, Journal of The Royal Society Interface.

[57]  Kenneth Stephenson,et al.  Cortical cartography using the discrete conformal approach of circle packings , 2004, NeuroImage.

[58]  E. Caiani,et al.  Warped-average template technique to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular volume , 1998, Computers in Cardiology 1998. Vol. 25 (Cat. No.98CH36292).

[59]  C. Schreck,et al.  Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): behavioural reaction and the physiological stress response , 1987 .

[60]  Monica K. Hurdal,et al.  Discrete conformal methods for cortical brain flattening , 2009, NeuroImage.

[61]  D. Chivers,et al.  Are Chemical Alarm Cues Conserved Within Salmonid Fishes? , 2001, Journal of Chemical Ecology.