Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder

[1]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[2]  Kathryn Roeder,et al.  Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes , 2013, PLoS genetics.

[3]  K. Becker,et al.  The Genetic Association Database , 2004, Nature Genetics.

[4]  Joshua M. Korn,et al.  Association between microdeletion and microduplication at 16p11.2 and autism. , 2008, The New England journal of medicine.

[5]  Aleksandra Badura,et al.  The Cerebellum, Sensitive Periods, and Autism , 2014, Neuron.

[6]  D. Licatalosi,et al.  FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism , 2011, Cell.

[7]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[8]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[9]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[10]  Michael Wigler,et al.  The role of de novo mutations in the genetics of autism spectrum disorders , 2014, Nature Reviews Genetics.

[11]  Christopher S. Poultney,et al.  Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci , 2015, Neuron.

[12]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[13]  David J. Heeger,et al.  Neural variability: friend or foe? , 2015, Trends in Cognitive Sciences.

[14]  N. Iguchi,et al.  Rosbin: A Novel Homeobox-Like Protein Gene Expressed Exclusively in Round Spermatids , 2004, Biology of reproduction.

[15]  Stephen J. Guter,et al.  Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders , 2014, American journal of human genetics.

[16]  G. Feng,et al.  Shank3 mutant mice display autistic-like behaviours and striatal dysfunction , 2011, Nature.

[17]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[18]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[19]  E. Susser,et al.  Association of maternal report of infant and toddler gastrointestinal symptoms with autism: evidence from a prospective birth cohort. , 2015, JAMA psychiatry.

[20]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[21]  C. Ponting,et al.  Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. , 2003, Genome research.

[22]  Daniele Merico,et al.  Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder , 2014, Nature Genetics.

[23]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[24]  Russell Conduit,et al.  The relationship between sleep and behavior in autism spectrum disorder (ASD): a review , 2014, Journal of Neurodevelopmental Disorders.

[25]  Elhanan Borenstein,et al.  The discovery of integrated gene networks for autism and related disorders , 2015, Genome research.

[26]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[27]  J. Buxbaum,et al.  Network‐ and attribute‐based classifiers can prioritize genes and pathways for autism spectrum disorders and intellectual disability , 2012, American journal of medical genetics. Part C, Seminars in medical genetics.

[28]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[29]  M. Khoury,et al.  A navigator for human genome epidemiology , 2008, Nature Genetics.

[30]  A. Prescott,et al.  Depletion of protein phosphatase 4 in human cells reveals essential roles in centrosome maturation, cell migration and the regulation of Rho GTPases. , 2008, The international journal of biochemistry & cell biology.

[31]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[32]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[33]  María Martín,et al.  The Gene Ontology: enhancements for 2011 , 2011, Nucleic Acids Res..

[34]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[35]  Owen M Rennert,et al.  Integrative gene network analysis provides novel regulatory relationships, genetic contributions and susceptible targets in autism spectrum disorders. , 2012, Gene.

[36]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[37]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[38]  Kenny Q. Ye,et al.  Low load for disruptive mutations in autism genes and their biased transmission , 2015, Proceedings of the National Academy of Sciences.

[39]  D H Geschwind,et al.  Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts , 2012, Molecular Psychiatry.

[40]  J. Sebat,et al.  Spatiotemporal 16p11.2 Protein Network Implicates Cortical Late Mid-Fetal Brain Development and KCTD13-Cul3-RhoA Pathway in Psychiatric Diseases , 2015, Neuron.

[41]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[42]  C. Lord,et al.  The Simons Simplex Collection: A Resource for Identification of Autism Genetic Risk Factors , 2010, Neuron.

[43]  Wei Xu,et al.  The disease and gene annotations (DGA): an annotation resource for human disease , 2012, Nucleic Acids Res..

[44]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[45]  S. Grant,et al.  Characterization of the proteome, diseases and evolution of the human postsynaptic density , 2011, Nature Neuroscience.

[46]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[47]  Stormy J. Chamberlain,et al.  Topoisomerases facilitate transcription of long genes linked to autism , 2013, Nature.

[48]  Eric Courchesne,et al.  Patches of disorganization in the neocortex of children with autism. , 2014, The New England journal of medicine.

[49]  Daniel P. Kennedy,et al.  The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism , 2013, Molecular Psychiatry.

[50]  D. Goldberg,et al.  Assessing experimentally derived interactions in a small world , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[52]  S. Horvath,et al.  Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology , 2011, Nature.

[53]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[54]  Roded Sharan,et al.  Associating Genes and Protein Complexes with Disease via Network Propagation , 2010, PLoS Comput. Biol..

[55]  A. Guastella,et al.  Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis , 2014, Molecular Psychiatry.

[56]  S. Horvath,et al.  Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism , 2014, Nature Communications.

[57]  Kathryn Roeder,et al.  NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM. , 2015, The annals of applied statistics.

[58]  Stephan J Sanders,et al.  The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment , 2015, Nature Communications.

[59]  Michael Snyder,et al.  Integrated systems analysis reveals a molecular network underlying autism spectrum disorders , 2014, Molecular systems biology.

[60]  Stephan J. Sanders,et al.  Genotype to phenotype relationships in autism spectrum disorders , 2014, Nature Neuroscience.

[61]  E. Ben-David,et al.  Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism , 2013, Molecular Psychiatry.

[62]  C. McDougle,et al.  Sensory symptoms in autism spectrum disorders. , 2014, Harvard review of psychiatry.

[63]  Sigal Berman,et al.  Anatomical Abnormalities in Autism? , 2016, Cerebral cortex.

[64]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[65]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[66]  Rich Caruana,et al.  Predicting good probabilities with supervised learning , 2005, ICML.

[67]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[68]  Sharmila Banerjee-Basu,et al.  SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs) , 2013, Molecular Autism.

[69]  Vladimir B. Bajic,et al.  HOCOMOCO: a comprehensive collection of human transcription factor binding sites models , 2012, Nucleic Acids Res..

[70]  Catherine Lord,et al.  Standardizing ADOS Domain Scores: Separating Severity of Social Affect and Restricted and Repetitive Behaviors , 2014, Journal of autism and developmental disorders.

[71]  Michael Wigler,et al.  Rare De Novo Variants Associated with Autism Implicate a Large Functional Network of Genes Involved in Formation and Function of Synapses , 2011, Neuron.

[72]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .