Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture

Given an Iterated Function System (IFS) of topical maps verifying some conditions, we prove that the asymptotic height optimization problems are equivalent to finding the extrema of a continuous functional, the average height, on some compact space of measures. We give general results to determine these extrema, and then apply them to two concrete problems. First, we give a new proof of the theorem that the densest heaps of two Tetris pieces are sturmian. Second, we construct an explicit counterexample to the Lagarias-Wang finiteness conjecture.

[1]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[2]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[3]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[4]  J. Quadrat,et al.  A linear-system-theoretic view of discrete-event processes , 1983, The 22nd IEEE Conference on Decision and Control.

[5]  Joel E. Cohen,et al.  Random matrices and their applications , 1986 .

[6]  A. Haurie,et al.  Infinite Horizon Optimal Control , 1987 .

[7]  Imre Simon The Nondeterministic Complexity of a Finite Automaton , 1987 .

[8]  A. Haurie,et al.  Infinite horizon optimal control : deterministic and stochastic systems , 1991 .

[9]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[10]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[11]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[12]  Shaun Bullett,et al.  Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[14]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[15]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[16]  Bruno Gaujal,et al.  Allocation sequences of two processes sharing a resource , 1995, IEEE Trans. Robotics Autom..

[17]  S. Gaubert Performance evaluation of (max, +) automata , 1995, IEEE Trans. Autom. Control..

[18]  Ott,et al.  Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Ricardo Mañé,et al.  Generic properties and problems of minimizing measures of Lagrangian systems , 1996 .

[20]  A. Fathi,et al.  Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , 1997 .

[21]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[22]  Bruno Gaujal Optimal Allocation Sequences of Two Processes Sharing a Resource , 1997, Discret. Event Dyn. Syst..

[23]  Jean Mairesse,et al.  Modeling and analysis of timed Petri nets using heaps of pieces , 1997, 1997 European Control Conference (ECC).

[24]  Jean-Marc Vincent,et al.  Some Ergodic Results on Stochastic Iterative Discrete Events Systems , 1997, Discret. Event Dyn. Syst..

[25]  Jean-Marc Vincent,et al.  Dynamics of synchronized parallel systems , 1997 .

[26]  Jeremy Gunawardena,et al.  A NON-LINEAR HIERARCHY FOR DISCRETE EVENT DYNAMICAL SYSTEMS , 1998 .

[27]  J. Mairesse,et al.  OPTIMAL SEQUENCES IN A HEAP MODEL WITH TWO PIECES , 1998 .

[28]  J. Gunawardena,et al.  Idempotency: List of Participants , 1998 .

[29]  J. Mairesse,et al.  Idempotency: Task resource models and (max, +) automata , 1998 .

[30]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[31]  Performance evaluation of timed Petri nets using heaps of pieces , 1999 .

[32]  Oliver Jenkinson Frequency Locking on the Boundary of the Barycentre Set , 2000, Exp. Math..

[33]  Thierry Bousch,et al.  Le poisson n'a pas d'arêtes , 2000 .

[34]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[35]  A. Lopes,et al.  Lyapunov minimizing measures for expanding maps of the circle , 2001, Ergodic Theory and Dynamical Systems.

[36]  Thierry Bousch La condition de Walters , 2001 .