Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
暂无分享,去创建一个
[1] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[2] K. Sigmund,et al. Ergodic Theory on Compact Spaces , 1976 .
[3] M. Crandall,et al. Some relations between nonexpansive and order preserving mappings , 1980 .
[4] J. Quadrat,et al. A linear-system-theoretic view of discrete-event processes , 1983, The 22nd IEEE Conference on Decision and Control.
[5] Joel E. Cohen,et al. Random matrices and their applications , 1986 .
[6] A. Haurie,et al. Infinite Horizon Optimal Control , 1987 .
[7] Imre Simon. The Nondeterministic Complexity of a Finite Automaton , 1987 .
[8] A. Haurie,et al. Infinite horizon optimal control : deterministic and stochastic systems , 1991 .
[9] I. Daubechies,et al. Sets of Matrices All Infinite Products of Which Converge , 1992 .
[10] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[11] Kim C. Border,et al. Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .
[12] Shaun Bullett,et al. Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Kim C. Border,et al. Infinite dimensional analysis , 1994 .
[14] J. Lagarias,et al. The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .
[15] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[16] Bruno Gaujal,et al. Allocation sequences of two processes sharing a resource , 1995, IEEE Trans. Robotics Autom..
[17] S. Gaubert. Performance evaluation of (max, +) automata , 1995, IEEE Trans. Autom. Control..
[18] Ott,et al. Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[19] Ricardo Mañé,et al. Generic properties and problems of minimizing measures of Lagrangian systems , 1996 .
[20] A. Fathi,et al. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , 1997 .
[21] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[22] Bruno Gaujal. Optimal Allocation Sequences of Two Processes Sharing a Resource , 1997, Discret. Event Dyn. Syst..
[23] Jean Mairesse,et al. Modeling and analysis of timed Petri nets using heaps of pieces , 1997, 1997 European Control Conference (ECC).
[24] Jean-Marc Vincent,et al. Some Ergodic Results on Stochastic Iterative Discrete Events Systems , 1997, Discret. Event Dyn. Syst..
[25] Jean-Marc Vincent,et al. Dynamics of synchronized parallel systems , 1997 .
[26] Jeremy Gunawardena,et al. A NON-LINEAR HIERARCHY FOR DISCRETE EVENT DYNAMICAL SYSTEMS , 1998 .
[27] J. Mairesse,et al. OPTIMAL SEQUENCES IN A HEAP MODEL WITH TWO PIECES , 1998 .
[28] J. Gunawardena,et al. Idempotency: List of Participants , 1998 .
[29] J. Mairesse,et al. Idempotency: Task resource models and (max, +) automata , 1998 .
[30] John N. Tsitsiklis,et al. Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..
[31] Performance evaluation of timed Petri nets using heaps of pieces , 1999 .
[32] Oliver Jenkinson. Frequency Locking on the Boundary of the Barycentre Set , 2000, Exp. Math..
[33] Thierry Bousch,et al. Le poisson n'a pas d'arêtes , 2000 .
[34] J. Tsitsiklis,et al. The boundedness of all products of a pair of matrices is undecidable , 2000 .
[35] A. Lopes,et al. Lyapunov minimizing measures for expanding maps of the circle , 2001, Ergodic Theory and Dynamical Systems.
[36] Thierry Bousch. La condition de Walters , 2001 .