Functional Considerations of the Operation of GABAergic Inhibitory Processes in the Visual Cortex

[1]  K. Albus,et al.  Early post‐natal development of neuronal function in the kitten's visual cortex: a laminar analysis. , 1984, The Journal of physiology.

[2]  H. Hirsch,et al.  Effects of exposure to lines of one or two orientations on different cell types in striate cortex of cat. , 1983, The Journal of physiology.

[3]  A. Cowey,et al.  Retrograde transport of gamma-amino[3H]butyric acid reveals specific interlaminar connections in the striate cortex of monkey. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Malpeli Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[5]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[6]  T R Vidyasagar,et al.  Response of neurons in the cat's lateral geniculate nucleus to moving bars of different length , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  N. Brecha,et al.  The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. II. Vasoactive intestinal polypeptide , 1982, Journal of neurocytology.

[8]  N. Brecha,et al.  The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. III. Cholecystokinin , 1982, Journal of neurocytology.

[9]  W. Levick,et al.  Analysis of orientation bias in cat retina , 1982, The Journal of physiology.

[10]  A. Cowey,et al.  Vertical organization of neurones accumulating 3H-GABA in visual cortex of rhesus monkey , 1981, Nature.

[11]  Alan Peters,et al.  A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex , 1981, The Journal of comparative neurology.

[12]  A. Peters,et al.  Bipolar neurons in rat visual cortex: A combined Golgi-electron microscope study , 1981, Journal of neurocytology.

[13]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[14]  A. Hendrickson,et al.  Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex , 1981, Nature.

[15]  L. Garey,et al.  The thalamic projection to cat visual cortex: Ultrastructure of neurons identified by golgi impregnation or retrograde horseradish peroxidase transport , 1981, Neuroscience.

[16]  A. Cowey,et al.  Combined golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey , 1981, The Journal of comparative neurology.

[17]  P. Heggelund Receptive field organization of simple cells in cat striate cortex , 1981, Experimental brain research.

[18]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[19]  P. Andersen,et al.  Two different responses of hippocampal pyramidal cells to application of gamma‐amino butyric acid. , 1980, The Journal of physiology.

[20]  V. Dobson,et al.  Neuronal Circuits Capable of Generating Visual Cortex Simple-Cell Stimulus Preferences , 1980, Perception.

[21]  E. White Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex , 1979, Brain Research Reviews.

[22]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[23]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[24]  A. Sillito Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. , 1979, The Journal of physiology.

[25]  Alan Peters,et al.  Smooth and sparsely‐spined stellate cells in the visual cortex of the rat: A study using a combined golgi‐electron microscope technique , 1978, The Journal of comparative neurology.

[26]  C. Ribak,et al.  Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase , 1978, Journal of neurocytology.

[27]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[28]  M. Kimura,et al.  Convergence of retinal inputs onto visual cortical cells: II. A study of the cells disynaptically excited from the lateral geniculate body , 1977, Brain Research.

[29]  A. Sillito The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells , 1977, The Journal of physiology.

[30]  A. Sillito,et al.  The contribution of excitatory and inhibitory inputs to the length preference of hypercomplex cells in layers II and III of the cat's striate cortex , 1977, The Journal of physiology.

[31]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[32]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[33]  A. Sillito Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex , 1977, The Journal of physiology.

[34]  D. Rose Responses of single units in cat visual cortex to moving bars of light as a function of bar length , 1977, The Journal of physiology.

[35]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[36]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[37]  Sanford L. Palay,et al.  The fine structure of the nervous system: The neurons and supporting cells , 1976 .

[38]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[39]  A. Sillito The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat's striate cortex. , 1975, The Journal of physiology.

[40]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[41]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[42]  J. Pettigrew,et al.  A study of inhibitory antagonism in cat visual cortex , 1975, Brain Research.

[43]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[44]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[45]  D. Jacobowitz,et al.  Quantitative relationship of catecholamine content and histofluorescence in brain of rats. , 1974, Brain research.

[46]  P. O. Bishop,et al.  Orientation specificity of cells in cat striate cortex. , 1974, Journal of neurophysiology.

[47]  Sillito Am Proceedings: Effects of the iontophoretic application of bicuculline on the receptive field properties of simple cells in the visual cortex of the cat. , 1974 .

[48]  P. O. Bishop,et al.  Orientation, axis and direction as stimulus parameters for striate cells. , 1974, Vision research.

[49]  C. Blakemore,et al.  Effects of bicuculline on functions of inhibition in visual cortex , 1974, Nature.

[50]  Sillito Am Proceedings: Modification of the receptive field properties of neurones in the visual cortex by bicuculline, a GABA antagonist. , 1974 .

[51]  J. Pettigrew,et al.  Gamma-Aminobutyric Acid Antagonism in Visual Cortex: Different Effects on Simple, Complex, and Hypercomplex Neurons , 1973, Science.

[52]  S. Levay,et al.  Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi Preparations , 1973, The Journal of comparative neurology.

[53]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[54]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[55]  D. R. Curtis,et al.  The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar corticles of the cat. , 1971, Brain research.

[56]  T. Powell,et al.  An experimental study of the termination of the lateral geniculo–cortical pathway in the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[57]  H McLennan,et al.  Antagonism between bicuculline and GABA in the cat brain. , 1971, Brain research.

[58]  L. Iversen,et al.  The release of γ‐aminobutyric acid during inhibition in the cat visual cortex , 1971 .

[59]  C. Armstrong The inhibitory path from the lateral geniculate body to the optic cortex in the cat. , 1968, Experimental neurology.

[60]  K. Uchizono Characteristics of Excitatory and Inhibitory Synapses in the Central Nervous System of the Cat , 1965, Nature.

[61]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[62]  J SZENTAGOTHAI,et al.  THE USE OF DEGENERATION METHODS IN THE INVESTIGATION OF SHORT NEURONAL CONNEXIONS. , 1965, Progress in brain research.

[63]  Gray Eg Electron microscopy of presynaptic organelles of the spinal cord. , 1963 .

[64]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[65]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: III. FIRING LEVEL AND TIME CONSTANT. , 1961, Journal of neurophysiology.