The unsteady eye: an information-processing stage, not a bug

[1]  Michele Rucci,et al.  The Visual Input to the Retina during Natural Head-Free Fixation , 2014, The Journal of Neuroscience.

[2]  Katharina Havermann,et al.  Fine-Scale Plasticity of Microscopic Saccades , 2014, The Journal of Neuroscience.

[3]  M. Rucci,et al.  Influence of Microsaccades on Contrast Sensitivity: Theoretical Analysis and Experimental Results , 2014 .

[4]  D. Munoz,et al.  Overt Responses during Covert Orienting , 2014, Neuron.

[5]  Barry B. Lee,et al.  Eye Movements and the Neural Basis of Context Effects on Visual Sensitivity , 2014, The Journal of Neuroscience.

[6]  Jonathan D Victor,et al.  The statistics of local motion signals in naturalistic movies. , 2014, Journal of vision.

[7]  Martina Poletti,et al.  Microscopic Eye Movements Compensate for Nonhomogeneous Vision within the Fovea , 2013, Current Biology.

[8]  D. Arathorn,et al.  How the unstable eye sees a stable and moving world. , 2013, Journal of vision.

[9]  Chih-Yang Chen,et al.  Postmicrosaccadic Enhancement of Slow Eye Movements , 2013, The Journal of Neuroscience.

[10]  Ziad M. Hafed Alteration of Visual Perception prior to Microsaccades , 2013, Neuron.

[11]  R. Ogden,et al.  Evaluating the contribution of shape attributes to recognition using the minimal transient discrete cue protocol , 2012, Behavioral and Brain Functions.

[12]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[13]  Ziad M. Hafed,et al.  Visual Fixation as Equilibrium: Evidence from Superior Colliculus Inactivation , 2012, The Journal of Neuroscience.

[14]  Ehud Ahissar,et al.  Seeing via Miniature Eye Movements: A Dynamic Hypothesis for Vision , 2012, Front. Comput. Neurosci..

[15]  Xoana G. Troncoso,et al.  Microsaccadic Efficacy and Contribution to Foveal and Peripheral Vision , 2012, The Journal of Neuroscience.

[16]  Heinrich H. Bülthoff,et al.  Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects , 2012, Front. Comput. Neurosci..

[17]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[18]  K. Cullen,et al.  Coding of Microsaccades in Three-Dimensional Space by Premotor Saccadic Neurons , 2012, The Journal of Neuroscience.

[19]  Clementine Thurgood,et al.  Towards a visual recognition threshold: New instrument shows humans identify animals with only 1ms of visual exposure , 2011, Vision Research.

[20]  Ralf Engbert,et al.  An integrated model of fixational eye movements and microsaccades , 2011, Proceedings of the National Academy of Sciences.

[21]  Eileen Kowler Eye movements: The past 25years , 2011, Vision Research.

[22]  G. Horwitz,et al.  Effects of microsaccades on contrast detection and V1 responses in macaques. , 2011, Journal of vision.

[23]  Wilsaan M. Joiner,et al.  Neuronal mechanisms for visual stability: progress and problems , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Aurel A. Lazar,et al.  Information theory in neuroscience , 2011, Journal of Computational Neuroscience.

[25]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[26]  Haim Sompolinsky,et al.  Bayesian model of dynamic image stabilization in the visual system , 2010, Proceedings of the National Academy of Sciences.

[27]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[28]  Gasper Tkacik,et al.  Local statistics in natural scenes predict the saliency of synthetic textures , 2010, Proceedings of the National Academy of Sciences.

[29]  Martina Poletti,et al.  Eye movements under various conditions of image fading. , 2010, Journal of vision.

[30]  Masaaki Kawahashi,et al.  Renovation of Journal of Visualization , 2010, J. Vis..

[31]  M. Rolfs Microsaccades: Small steps on a long way , 2009, Vision Research.

[32]  Todd M. Herrington,et al.  The Effect of Microsaccades on the Correlation between Neural Activity and Behavior in Middle Temporal, Ventral Intraparietal, and Lateral Intraparietal Areas , 2009, The Journal of Neuroscience.

[33]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[34]  Michelle R. Greene,et al.  The Briefest of Glances: The Time Course of Natural Scene Understanding , 2009 .

[35]  Ziad M. Hafed,et al.  A Neural Mechanism for Microsaccade Generation in the Primate Superior Colliculus , 2009, Science.

[36]  A. Casile,et al.  A theory of the influence of eye movements on the refinement of direction selectivity in the cat's primary visual cortex , 2009, Network.

[37]  H. Collewijn,et al.  The significance of microsaccades for vision and oculomotor control. , 2008, Journal of vision.

[38]  D. Snodderly,et al.  Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. , 2008, Journal of vision.

[39]  S. Martinez-Conde,et al.  Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception. , 2008, Journal of vision.

[40]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[41]  D. Angelaki,et al.  Vestibular system: the many facets of a multimodal sense. , 2008, Annual review of neuroscience.

[42]  Michele Rucci,et al.  Fixational eye movements, natural image statistics, and fine spatial vision , 2008, Network.

[43]  Michele Rucci,et al.  EyeRIS: A general-purpose system for eye-movement-contingent display control , 2007, Behavior research methods.

[44]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[45]  M. Rucci,et al.  A model of the dynamics of retinal activity during natural visual fixation , 2007, Visual Neuroscience.

[46]  M. Weliky,et al.  Simple fall-off pattern of correlated neural activity in the developing lateral geniculate nucleus , 2006, Nature Neuroscience.

[47]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[48]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[49]  S. Thorpe,et al.  The time course of visual processing: Backward masking and natural scene categorisation , 2005, Vision Research.

[50]  Michele Rucci,et al.  Fixational instability and natural image statistics: Implications for early visual representations , 2005, Network.

[51]  Michele Rucci,et al.  Decorrelation of neural activity during fixational instability: Possible implications for the refinement of V1 receptive fields , 2004, Visual Neuroscience.

[52]  A. Zettl,et al.  Angle closure glaucoma after laser photocoagulation for retinopathy of prematurity , 2004, British Journal of Ophthalmology.

[53]  M. Rucci,et al.  Contributions of fixational eye movements to the discrimination of briefly presented stimuli. , 2003, Journal of vision.

[54]  Florentin Wörgötter,et al.  Eye Micro-movements Improve Stimulus Detection Beyond the Nyquist Limit in the Peripheral Retina , 2003, NIPS.

[55]  Paul Greengard,et al.  Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia , 2003, Nature Neuroscience.

[56]  Markus Bongard,et al.  Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.

[57]  Ehud Ahissar,et al.  Figuring Space by Time , 2001, Neuron.

[58]  D. Simons,et al.  Change Blindness in the Absence of a Visual Disruption , 2000, Perception.

[59]  G. Edelman,et al.  Modeling LGN Responses during Free-Viewing: A Possible Role of Microscopic Eye Movements in the Refinement of Cortical Orientation Selectivity , 2000, The Journal of Neuroscience.

[60]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[61]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[62]  David Williams,et al.  Blurring by fixational eye movements , 1992, Vision Research.

[63]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[64]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[65]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[66]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  H. Collewijn,et al.  Binocular retinal image motion during active head rotation , 1980, Vision Research.

[68]  Robert Michael Jones,et al.  The effect of micromovements of the eye and exposure duration on contrast sensitivity , 1976, Vision Research.

[69]  R. C. Emerson,et al.  Paralysis of the awake human: Visual perceptions , 1976, Vision Research.

[70]  L. Arend Spatial differential and integral operations in human vision: implications of stabilized retinal image fading. , 1973, Psychological review.

[71]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[72]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[73]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[74]  E. Andersen,et al.  VISUAL PERCEPTION AND THE RETINAL MOSAIC , 1923 .

[75]  Martina Poletti,et al.  A compact field guide to the study of microsaccades: Challenges and functions , 2016, Vision Research.

[76]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[77]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[78]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[79]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[80]  E Kaplan,et al.  The dynamics of primate retinal ganglion cells. , 2001, Progress in brain research.

[81]  Ethan A. Benardete,et al.  Chapter 2 The dynamics of primate retinal ganglion cells , 2001 .

[82]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[83]  Steinman Rm,et al.  The role of eye movement in the detection of contrast and spatial detail. , 1990 .

[84]  R. W. Ditchburn Eye-movements and visual perception , 1973 .

[85]  F. W. Weymouth,et al.  Visual perception and the retinal mosaic. II. The influence of eye-movements on the displacement threshold. , 1925 .