Partially coupled gradient estimation algorithm for multivariable equation-error autoregressive moving average systems using the data filtering technique

System identification provides many convenient and useful methods for engineering modelling. This study targets the parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence of the coloured noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and to transform the original system into a filtered system with white noises. Then the filtered system is decomposed into several subsystems and a filtering-based partially-coupled generalised extended stochastic gradient algorithm is developed via the coupling concept. In contrast to the multivariable generalised extended stochastic gradient algorithm, the proposed algorithm can give more accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples.

[1]  Wei Xing Zheng,et al.  A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem , 2018, Circuits Syst. Signal Process..

[2]  Xuemei Li,et al.  Forecasting Chinese CO 2 emissions from fuel combustion using a novel grey multivariable model , 2017 .

[3]  Zupeng Zhou,et al.  State and fault estimation of sandwich systems with hysteresis , 2018 .

[4]  Tao Han,et al.  Optimal modified performance of MIMO networked control systems with multi-parameter constraints. , 2019, ISA transactions.

[5]  F. Alsaadi,et al.  Recursive parameter identification of the dynamical models for bilinear state space systems , 2017 .

[6]  Jian Pan,et al.  Adaptive Gradient-Based Iterative Algorithm for Multivariable Controlled Autoregressive Moving Average Systems Using the Data Filtering Technique , 2018, Complex..

[7]  Yasser Shekofteh,et al.  A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation , 2018, Entropy.

[8]  Fuad E. Alsaadi,et al.  Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique , 2018 .

[9]  Feng Ding,et al.  Partially coupled extended stochastic gradient algorithm for nonlinear multivariable output error moving average systems , 2017 .

[10]  Yu Guo,et al.  Robust adaptive estimation of nonlinear system with time‐varying parameters , 2015 .

[11]  F. Z. Geng,et al.  An optimal reproducing kernel method for linear nonlocal boundary value problems , 2018, Appl. Math. Lett..

[12]  Feng Ding,et al.  A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation , 2018, J. Frankl. Inst..

[13]  Jianqiang Pan,et al.  A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems , 2017 .

[14]  Liang Liang,et al.  Optimization of Information Interaction Protocols in Cooperative Vehicle-Infrastructure Systems , 2018 .

[15]  Boying Wu,et al.  A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions , 2018, Appl. Math. Lett..

[16]  Peng Li,et al.  Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing , 2018, Future Gener. Comput. Syst..

[17]  Wei Li,et al.  Control Algorithms of Magnetic Suspension Systems Based on the Improved Double Exponential Reaching Law of Sliding Mode Control , 2018, International Journal of Control, Automation and Systems.

[18]  Min Liu,et al.  Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network , 2018, KSII Trans. Internet Inf. Syst..

[19]  Ling Xu The parameter estimation algorithms based on the dynamical response measurement data , 2017 .

[20]  Erfu Yang,et al.  State filtering‐based least squares parameter estimation for bilinear systems using the hierarchical identification principle , 2018, IET Control Theory & Applications.

[21]  Xia Zhang,et al.  Standard Analysis for Transfer Delay in CTCS-3 , 2017 .

[22]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[23]  Petre Stoica,et al.  Recursive nonlinear-system identification using latent variables , 2016, Autom..

[24]  T. Hayat,et al.  Hierarchical Parameter Estimation for the Frequency Response Based on the Dynamical Window Data , 2018, International Journal of Control, Automation and Systems.

[25]  Erfu Yang,et al.  Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems , 2018, Digit. Signal Process..

[26]  Giulio Bottegal,et al.  Robust EM kernel-based methods for linear system identification , 2014, Autom..

[27]  Feng Ding,et al.  Combined state and parameter estimation for a bilinear state space system with moving average noise , 2018, J. Frankl. Inst..

[28]  Feng Liu,et al.  On the regularity of maximal operators supported by submanifolds , 2017 .

[29]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[30]  Yu Guo,et al.  Robust adaptive parameter estimation of sinusoidal signals , 2015, Autom..

[31]  Rajamani Doraiswami,et al.  Robust Kalman filter-based least squares identification of a multivariable system , 2018 .

[32]  Feng Liu,et al.  Singular integrals related to homogeneous mappings in Triebel-Lizorkin spaces , 2017 .

[33]  Michel Verhaegen,et al.  Blind multivariable ARMA subspace identification , 2016, Autom..

[34]  Weihai Zhang,et al.  Global stabilization for a class of stochastic nonlinear systems with SISS‐like conditions and time delay , 2018 .

[35]  Saleh Mobayen,et al.  Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback , 2014 .

[36]  Feng Liu,et al.  Rough maximal functions supported by subvarieties on Triebel–Lizorkin spaces , 2018 .

[37]  Meihang Li,et al.  The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique , 2018, Signal Process..

[38]  Feng Ding,et al.  Parameter estimation for control systems based on impulse responses , 2017 .

[39]  Tao Liu,et al.  Identification of dual-rate sampled systems with time delay subject to load disturbance , 2017 .

[40]  Feng Ding,et al.  Iterative Parameter Estimation for Signal Models Based on Measured Data , 2018, Circuits Syst. Signal Process..

[41]  Rik Pintelon,et al.  Identification of multivariable dynamic errors-in-variables system with arbitrary inputs , 2017, Autom..

[42]  Feng Liu,et al.  Regularity of discrete multisublinear fractional maximal functions , 2017 .

[43]  Ai Hui Tan,et al.  Identification of a multivariable nonlinear and time-varying mist reactor system , 2017 .

[44]  C. Yin,et al.  Optimal dividends problem with a terminal value for spectrally positive Levy processes , 2013, 1302.6011.

[45]  Ying Shen,et al.  Exit problems for jump processes with applications to dividend problems , 2013, J. Comput. Appl. Math..

[46]  Wen-Qin Wang,et al.  Sparsity-aware transmit beamspace design for FDA-MIMO radar , 2018, Signal Process..

[47]  S. Andrew Gadsden,et al.  Gaussian filters for parameter and state estimation: A general review of theory and recent trends , 2017, Signal Process..

[48]  Rui Liu,et al.  Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks , 2018, Wirel. Networks.

[49]  Min Gan,et al.  A Variable Projection Approach for Efficient Estimation of RBF-ARX Model , 2015, IEEE Transactions on Cybernetics.

[50]  Feng Ding,et al.  Some new results of designing an IIR filter with colored noise for signal processing , 2018, Digit. Signal Process..

[51]  Long Chen,et al.  On Some Separated Algorithms for Separable Nonlinear Least Squares Problems , 2018, IEEE Transactions on Cybernetics.

[52]  Jiling Ding,et al.  Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise , 2018, Circuits Syst. Signal Process..

[53]  C. Yin,et al.  The Perturbed Compound Poisson Risk Process with Investment and Debit Interest , 2010 .

[54]  Feng Ding,et al.  Several multi-innovation identification methods , 2010, Digit. Signal Process..

[55]  Jiling Ding,et al.  The Hierarchical Iterative Identification Algorithm for Multi-Input-Output-Error Systems with Autoregressive Noise , 2017, Complex..