Interactions matter—complexity in landscapes and ecosystems

[1]  E. Mayr Systematics and the Origin of Species , 1942 .

[2]  G. F. Gause The struggle for existence , 1971 .

[3]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[4]  Richard G. Wiegert,et al.  Simulation Models of Ecosystems , 1975 .

[5]  Bernard C. Patten,et al.  Ecosystem Linearization: An Evolutionary Design Problem , 1975, The American Naturalist.

[6]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[7]  M. B. Davis,et al.  Pleistocene biogeography of temperate deciduous forests , 1976 .

[8]  Alan Roberts,et al.  Complex systems which evolve towards homeostasis , 1979, Nature.

[9]  D. Stauffer Scaling Theory of Percolation Clusters , 1979, Complex Media and Percolation Theory.

[10]  S. Pimm,et al.  The structure of food webs. , 1979, Theoretical population biology.

[11]  T. Webb,,et al.  The Past 11,000 Years of Vegetational Change in Eastern North America , 1981 .

[12]  I. Prigogine,et al.  From Being to Becoming: Time and Complexity in the Physical Sciences , 1982 .

[13]  B. Bollobás The evolution of random graphs , 1984 .

[14]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[15]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[16]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[17]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[18]  T. Cormier,et al.  Statistical origin of the highest-energy fusion-induced gamma rays , 1988 .

[19]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[20]  Monica G. Turner,et al.  Predicting the spread of disturbance across heterogeneous landscapes , 1989 .

[21]  Roger Bradbury,et al.  Modelling the effects of predation and dispersal on the generation of waves of starfish outbreaks , 1990 .

[22]  R. Gardner,et al.  Quantitative Methods in Landscape Ecology , 1991 .

[23]  Charles E. Taylor,et al.  Artificial Life II , 1991 .

[24]  Yoh Iwasa,et al.  Modeling of Wave Regeneration in Subalpine Abies Forests: Population Dynamics with Spatial Structure , 1993 .

[25]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[26]  D. Schluter,et al.  Character displacement and replicate adaptive radiation. , 1993, Trends in ecology & evolution.

[27]  David G. Green,et al.  Complex Systems: From Biology to Computation , 1993 .

[28]  J Theiler,et al.  Two tools to test time series data for evidence of chaos and/or nonlinearity , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[29]  Chris Adami On modeling life , 1994 .

[30]  Louise K. Comfort,et al.  Self-Organization in Complex Systems , 1994 .

[31]  O P Judson,et al.  The rise of the individual-based model in ecology. , 1994, Trends in ecology & evolution.

[32]  C. Adami,et al.  Self-organized criticality in living systems , 1994, adap-org/9401001.

[33]  John H. Holland,et al.  Hidden Order: How Adaptation Builds Complexity , 1995 .

[34]  Ronaldo A. Sequeira,et al.  An emergent computational approach to the study of ecosystem dynamics , 1995 .

[35]  T. O. Crist,et al.  Critical Thresholds in Species' Responses to Landscape Structure , 1995 .

[36]  J. Bascompte,et al.  Rethinking complexity: modelling spatiotemporal dynamics in ecology. , 1995, Trends in ecology & evolution.

[37]  David B. Lindenmayer,et al.  A simulation study of the impacts of population subdivision on the mountain brushtail possum Trichosurus caninus Ogilby (Phalangeridae: Marsupialia), in south-eastern Australia. II. Loss of genetic variation within and between subpopulations , 1995 .

[38]  J Uchmański,et al.  Individual-based modelling in ecology: what makes the difference? , 1996, Trends in ecology & evolution.

[39]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[40]  G. Fox,et al.  Chaos and evolution. , 1995, Trends in ecology & evolution.

[41]  G D Ruxton,et al.  Spatial self-organisation in ecology: pretty patterns or robust reality? , 1997, Trends in ecology & evolution.

[42]  Y. Ziv,et al.  The effect of habitat heterogeneity on species diversity patterns: a community-level approach using an object-oriented landscape simulation model (SHALOM) , 1998 .

[43]  S. Levin Ecosystems and the Biosphere as Complex Adaptive Systems , 1998, Ecosystems.

[44]  C. Adami,et al.  Critical exponent of species-size distribution in evolution , 1998, adap-org/9804002.

[45]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[46]  Thomas Stephan,et al.  The extinction risk of a population exploiting a resource , 1999 .

[47]  V. Grimm Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? , 1999 .

[48]  Janusz Uchmański,et al.  What promotes persistence of a single population: an individual-based model , 1999 .

[49]  D. King,et al.  Image modelling of forest changes associated with acid mine drainage , 1999 .

[50]  Kai N. Lee Appraising Adaptive Management , 1999 .

[51]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[52]  Eric P. M. Grist,et al.  The significance of spatio-temporal neighbourhood on plant competition for light and space , 1999 .

[53]  Volker Grimm,et al.  Individual-based modelling and ecological theory: synthesis of a workshop , 1999 .

[54]  J. Puigdefabregas,et al.  Banded vegetation patterning in a subantarctic forest of Tierra del Fuego, as an outcome of the interaction between wind and tree growth , 1999 .

[55]  Oskar Kindvall,et al.  Consequences of modelling interpatch migration as a function of patch geometry when predicting metapopulation extinction risk , 2000 .

[56]  R. Holt,et al.  Alternative causes for range limits: a metapopulation perspective , 2000 .

[57]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[58]  John S. McCaskill,et al.  Open Problems in Artificial Life , 2000, Artificial Life.

[59]  David G. Green,et al.  Complex Systems: Are ecosystems complex systems? , 2000 .

[60]  V. Latora,et al.  Harmony in the Small-World , 2000, cond-mat/0008357.

[61]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[62]  J. Guégan,et al.  Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. , 2000, International journal for parasitology.

[63]  Andrew Fall,et al.  A domain-specific language for models of landscape dynamics , 2001 .

[64]  N. Barton,et al.  Theory and speciation. , 2001, Trends in ecology & evolution.

[65]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[66]  Albert-Laszlo Barabasi,et al.  Deterministic scale-free networks , 2001 .

[67]  R. Brooks The relationship between matter and life , 2001, Nature.

[68]  C. Ofria,et al.  Evolution of digital organisms at high mutation rates leads to survival of the flattest , 2001, Nature.

[69]  C. Wilke,et al.  Interaction between directional epistasis and average mutational effects , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[70]  A. Seitz,et al.  The use of Markovian metapopulation models: a comparison of three methods reducing the dimensionality of transition matrices. , 2001, Theoretical population biology.

[71]  Fivos Papadimitriou,et al.  Modelling indicators and indices of landscape complexity: an approach using G.I.S. , 2002 .

[72]  Michael D Mastrandrea,et al.  Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  J. Kirchner The Gaia Hypothesis: Fact, Theory, and Wishful Thinking , 2002 .

[74]  Rob H. G. Jongman,et al.  Homogenisation and fragmentation of the European landscape: ecological consequences and solutions , 2002 .

[75]  Saadia Aassine,et al.  Vegetation dynamics modelling: a method for coupling local and space dynamics , 2002 .

[76]  James H Brown,et al.  The fractal nature of nature: power laws, ecological complexity and biodiversity. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[77]  Mark Rees,et al.  Snow Tussocks, Chaos, and the Evolution of Mast Seeding , 2002, The American Naturalist.

[78]  A. Kleidon Testing the Effect of Life on Earth's Functioning: How Gaian Is the Earth System? , 2002 .

[79]  Mercedes Pascual,et al.  Cluster size distributions: signatures of self-organization in spatial ecologies. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[80]  Emergent Organization in Dynamic Networks , 2002 .

[81]  T. Tscharntke,et al.  Insect communities and biotic interactions on fragmented calcareous grasslands - a mini review , 2002 .

[82]  A. Mynett,et al.  Application of cellular automata to modelling competitive growths of two underwater species Chara aspera and Potamogeton pectinatus in Lake Veluwe , 2002 .

[83]  Jürgen Groeneveld,et al.  A spatial model of coexistence among three Banksia species along a topographic gradient in fire‐prone shrublands , 2002 .

[84]  J. Montoya,et al.  Small world patterns in food webs. , 2002, Journal of theoretical biology.

[85]  Ricard V Solé,et al.  Self-organized instability in complex ecosystems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[86]  T. Lenton,et al.  Gaia as a complex adaptive system. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[87]  G. Perry,et al.  Spatial modelling of landscape composition and pattern in a maquis–forest complex, Mont Do, New Caledonia , 2002 .

[88]  Z. Neda,et al.  Networks in life: Scaling properties and eigenvalue spectra , 2002, cond-mat/0303106.

[89]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[90]  Pierre Taberlet,et al.  Landscape genetics: combining landscape ecology and population genetics , 2003 .

[91]  S. Hubbell,et al.  Neutral theory and relative species abundance in ecology , 2003, Nature.

[92]  M. Butler Incorporating ecological process and environmental change into spiny lobster population models using a spatially-explicit, individual-based approach , 2003 .

[93]  The world according to niche , 2003 .

[94]  B. McGill A test of the unified neutral theory of biodiversity , 2003, Nature.

[95]  Otso Ovaskainen,et al.  Metapopulation theory for fragmented landscapes. , 2003, Theoretical population biology.

[96]  Peter Odderskær,et al.  ALMaSS, an agent-based model for animals in temperate European landscapes , 2003 .

[97]  Timothy M Lenton,et al.  Catastrophic desert formation in Daisyworld. , 2003, Journal of theoretical biology.

[98]  Christophe Le Page,et al.  Agent based simulation of a small catchment water management in northern Thailand: Description of the CATCHSCAPE model , 2003 .

[99]  François Bousquet,et al.  Agent-based simulations of interactions between duck population, farming decisions and leasing of hunting rights in the Camargue (Southern France) , 2003 .

[100]  Elizabeth A. Fulton,et al.  Mortality and predation in ecosystem models: is it important how these are expressed? , 2003 .

[101]  Hiroki Sayama,et al.  Dynamics and genealogy of strains in spatially extended host-pathogen models. , 2003, Journal of theoretical biology.

[102]  S. Nee,et al.  The end of the beginning for neutral theory , 2003 .

[103]  Sergio A Cannas,et al.  Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. , 2003, Mathematical biosciences.

[104]  A. Komarov,et al.  The concept of discrete description of plant ontogenesis and cellular automata models of plant populations , 2003 .

[105]  M. Benton,et al.  How to kill (almost) all life: the end-Permian extinction event , 2003 .

[106]  D. G. Green,et al.  Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics , 1989, Vegetatio.

[107]  R. H. Gardner,et al.  Quantifying scale-dependent effects of animal movement with simple percolation models , 1989, Landscape Ecology.

[108]  M. Lexer,et al.  Effects of error in model input: experiments with a forest patch model , 2004 .

[109]  D. G. Green,et al.  Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia , 2001, Landscape Ecology.

[110]  K. Tainaka,et al.  Spatial enhancement of population uncertainty near the extinction threshold , 2004 .

[111]  Charles Ofria,et al.  Avida , 2004, Artificial Life.

[112]  P. R. van Gardingen,et al.  An individual-based spatially explicit simulation model for strategic forest management planning in the eastern Amazon , 2004 .

[113]  M. Ball Ecophysiology of mangroves , 1988, Trees.

[114]  Daniel Delahaye,et al.  From modelling to experiment , 2004 .

[115]  M. Hare,et al.  Further towards a taxonomy of agent-based simulation models in environmental management , 2004, Math. Comput. Simul..

[116]  Eric J. Gustafson,et al.  Simulating dispersal of reintroduced species within heterogeneous landscapes , 2004 .

[117]  C. S. Holling Adaptive Environmental Assessment and Management , 2005 .

[118]  Robert V. O'Neill,et al.  Neutral models for the analysis of broad-scale landscape pattern , 1987, Landscape Ecology.

[119]  David G. Green,et al.  Complexity in Landscape Ecology , 2006, Landscape Series.