Rendezvous in planar environments with obstacles and unknown initial distance

Abstract In the rendezvous search problem, two or more robots at unknown locations should meet somewhere in the environment as quickly as possible. We study the symmetric rendezvous search problem in unknown planar environments with polygonal obstacles. In the symmetric version of the problem, the robots must execute the same rendezvous strategy. We consider the case where the initial distance between the robots is unknown, and the robot is unaware of its and the other robots' locations in the environment. We first design a symmetric rendezvous strategy for two robots and perform its theoretical analysis. We prove that the competitive ratio of our strategy is O ( d / D ) . Here, d is the initial distance between the robots and D is the length of the sides of the square robots. In unknown polygonal environments, robots should explore the environment to achieve rendezvous. Therefore, we propose a coverage algorithm that guarantees the complete coverage of the environment. Next, we extend our symmetric rendezvous strategy to n robots and prove that its competitive ratio is O ( d / ( n D ) ) . Here, d is the maximal pairwise distance between the robots. Finally, we validate our algorithms in simulations.

[1]  Elon Rimon,et al.  Competitive Complexity of Mobile Robot On Line Motion Planning Problems , 2004, WAFR.

[2]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 2: The Asynchronous Case , 2007, SIAM J. Control. Optim..

[3]  Joel W. Burdick,et al.  Online Algorithms with Discrete Visibility - Exploring Unknown Polygonal Environments , 2008, IEEE Robotics & Automation Magazine.

[4]  Nicola Santoro,et al.  Solving the Robots Gathering Problem , 2003, ICALP.

[5]  Andrzej Pelc Deterministic Gathering with Crash Faults , 2018, Networks.

[6]  Andrzej Pelc,et al.  Worst-case optimal exploration of terrains with obstacles , 2013, Inf. Comput..

[7]  Jurek Czyzowicz,et al.  Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids , 2010, DISC.

[8]  Ricardo A. Baeza-Yates,et al.  Searching in the Plane , 1993, Inf. Comput..

[9]  Andrzej Pelc,et al.  How to meet asynchronously at polynomial cost , 2013, PODC '13.

[10]  Sándor P. Fekete,et al.  Two Dimensional Rendezvous Search , 2001, Oper. Res..

[11]  Masafumi Yamashita,et al.  Erratum: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 2006, SIAM J. Comput..

[12]  Jurek Czyzowicz,et al.  Tell Me Where I Am So I Can Meet You Sooner , 2010, ICALP.

[13]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[14]  Richard Weber,et al.  The optimal strategy for symmetric rendezvous search on K3 , 2009, 0906.5447.

[15]  Amna Khan,et al.  Online complete coverage path planning using two-way proximity search , 2017, Intell. Serv. Robotics.

[16]  Jon M. Kleinberg,et al.  On-line search in a simple polygon , 1994, SODA '94.

[17]  Andrzej Pelc,et al.  Asynchronous deterministic rendezvous in graphs , 2006, Theor. Comput. Sci..

[18]  Alfredo Navarra,et al.  Taking Advantage of Symmetries: Gathering of Asynchronous Oblivious Robots on a Ring , 2008, OPODIS.

[19]  Richard Weber,et al.  The rendezvous problem on discrete locations , 1990, Journal of Applied Probability.

[20]  Andrew Beveridge,et al.  Symmetric Rendezvous Search on the Line With an Unknown Initial Distance , 2013, IEEE Transactions on Robotics.

[21]  Steve Alpern,et al.  Pure Strategy Asymmetric Rendezvous on the Line with an Unknown Initial Distance , 2000, Oper. Res..

[22]  Bala Kalyanasundaram,et al.  A Competitive Analysis of Algorithms for Searching Unknown Scenes , 1993, Comput. Geom..

[23]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[24]  Grzegorz Stachowiak,et al.  Asynchronous Deterministic Rendezvous on the Line , 2009, SOFSEM.

[25]  Elon Rimon,et al.  Spanning-tree based coverage of continuous areas by a mobile robot , 2004, Annals of Mathematics and Artificial Intelligence.

[26]  E. Anderson,et al.  Rendezvous Search on the Line with Indistinguishable Players , 1995 .

[27]  Zhiyang Yao Finding Efficient Robot Path for the Complete Coverage of A Known Space , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Steve Alpern,et al.  Rendezvous in Higher Dimensions , 2006, SIAM J. Control. Optim..

[29]  Hoang Huu Viet,et al.  B-Theta*: an Efficient Online Coverage Algorithm for Autonomous Cleaning Robots , 2017, J. Intell. Robotic Syst..

[30]  Ioannis M. Rekleitis,et al.  Efficient complete coverage of a known arbitrary environment with applications to aerial operations , 2014, Auton. Robots.

[31]  S. Alpern The Rendezvous Search Problem , 1995 .

[32]  Sonal Jain,et al.  Multi-robot forest coverage , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Masafumi Yamashita,et al.  Formation and agreement problems for synchronous mobile robots with limited visibility , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[34]  Gaurav S. Sukhatme,et al.  Achieving connectivity through coalescence in mobile robot networks , 2007 .

[35]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[36]  Alan K. Mackworth,et al.  Multi-robot repeated area coverage , 2013, Auton. Robots.

[37]  Gregory Dudek,et al.  Collaborative Robot Exploration and Rendezvous: Algorithms, Performance Bounds and Observations , 2001, Auton. Robots.

[38]  Daniel Liberzon,et al.  Rendezvous Without Coordinates , 2012, IEEE Trans. Autom. Control..

[39]  Elon Rimon,et al.  Online Coverage by a Tethered Autonomous Mobile Robot in Planar Unknown Environments , 2013, IEEE Transactions on Robotics.

[40]  Andrzej Pelc,et al.  Gathering few fat mobile robots in the plane , 2009, Theor. Comput. Sci..

[41]  Andrzej Pelc,et al.  Polynomial Deterministic Rendezvous in Arbitrary Graphs , 2004, ISAAC.

[42]  Steve Alpern,et al.  Asymmetric Rendezvous on the Line Is a Double Linear Search Problem , 1999, Math. Oper. Res..

[43]  Mark Cieliebak,et al.  Gathering Non-oblivious Mobile Robots , 2004, LATIN.

[44]  Philippe Pasquier,et al.  Complete and robust cooperative robot area coverage with limited range , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Andrzej Pelc,et al.  Deterministic Rendezvous in Graphs , 2003, Algorithmica.

[46]  Noa Agmon,et al.  Fault-tolerant gathering algorithms for autonomous mobile robots , 2004, SODA '04.

[47]  Xavier Défago,et al.  Gathering Asynchronous Mobile Robots with Inaccurate Compasses , 2006, OPODIS.

[48]  Bengt J. Nilsson,et al.  Improved Exploration of Rectilinear Polygons , 2002, Nord. J. Comput..

[49]  Pallab Dasgupta,et al.  Agent Searching in a Tree and the Optimality of Iterative Deepening , 1994, Artif. Intell..

[50]  Nicola Santoro,et al.  Gathering of asynchronous robots with limited visibility , 2005, Theor. Comput. Sci..

[51]  S. Gal,et al.  Rendezvous on the Line when the Players' Initial Distance is Given by an Unknown Probability Distribution , 1998 .

[52]  Francesco Bullo,et al.  Multirobot Rendezvous With Visibility Sensors in Nonconvex Environments , 2006, IEEE Transactions on Robotics.

[53]  Giuseppe Prencipe On the Feasibility of Gathering by Autonomous Mobile Robots , 2005, SIROCCO.

[54]  Boumediene Belkhouche,et al.  Multi-robot rendezvous in the plane , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[55]  Susanne Albers,et al.  Exploring Unknown Environments with Obstacles , 1999, SODA '99.

[56]  Andrzej Pelc,et al.  How to meet asynchronously (almost) everywhere , 2010, SODA '10.

[57]  Andrew Beveridge,et al.  Symmetric Rendezvous in Planar Environments With and Without Obstacles , 2012, AAAI.

[58]  V. J. Baston Note : Two rendezvous search problems on the line , 1999 .

[59]  Joel W. Burdick,et al.  A Coverage Algorithm for Multi-robot Boundary Inspection , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[60]  Mark Cieliebak,et al.  Gathering Autonomous Mobile Robots , 2002, SIROCCO.

[61]  Nicola Santoro,et al.  Gathering of Asynchronous Oblivious Robots with Limited Visibility , 2001, STACS.

[62]  M. Cao,et al.  Multi-agent rendezvousing with a finite set of candidate rendezvous points , 2008, 2008 American Control Conference.

[63]  Elon Rimon,et al.  Competitive on-line coverage of grid environments by a mobile robot , 2003, Comput. Geom..

[64]  Lyn C. Thomas,et al.  Searching for targets who want to be found , 1997 .

[65]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[66]  Shmuel Gal Rendezvous Search on the Line , 1999, Oper. Res..

[67]  D. Newman,et al.  Yet more on the linear search problem , 1970 .

[68]  Donglei Du,et al.  Improved bounds for the symmetric rendezvous value on the line , 2007, SODA '07.

[69]  Manuela M. Veloso,et al.  Coverage planning with finite resources , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[70]  Sándor P. Fekete,et al.  Polygon exploration with time-discrete vision , 2008, Comput. Geom..

[71]  Dariusz R. Kowalski,et al.  How to meet in anonymous network , 2006, Theor. Comput. Sci..

[72]  Ming-Yang Kao,et al.  Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem , 1996, SODA '93.

[73]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[74]  Nicola Santoro,et al.  Rendezvous of Two Robots with Constant Memory , 2013, SIROCCO.

[75]  S. Gal,et al.  Rendezvous Search on the Line With Distinguishable Players , 1995 .

[76]  Noa Agmon,et al.  The giving tree: constructing trees for efficient offline and online multi-robot coverage , 2008, Annals of Mathematics and Artificial Intelligence.