Drosophila Polymorphism Database (DPDB)A Portal for Nucleotide Polymorphism in Drosophila

As a growing number of haplotypic sequences from re-sequencing studies are now accumulating for Drosophila in the main primary sequence databases, collectively they can now be used to describe the general pattern of nucleotide variation across species and genes of this genus. The Drosophila Polymorphism Database (DPDB) is a secondary database that provides a collection of all well-annotated polymorphic sequences in Drosophila together with their associated diversity measures and options for re-analysis of the data that greatly facilitate both multi-locus and multi-species diversity studies in one of the most important group of model organisms. Here we describe the state-of-the-art of the DPDB database and provide a step-by-step guide to all its searching and analytic capabilities. Finally, we illustrate its usefulness through selected examples. DPDB is freely available at http://dpdb.uab.cat.

[1]  A. Ruíz,et al.  Protein Polymorphism Is Negatively Correlated with Conservation of Intronic Sequences and Complexity of Expression Patterns in Drosophila melanogaster , 2007, Journal of Molecular Evolution.

[2]  W. Gelbart,et al.  Research resources for Drosophila: the expanding universe , 2005, Nature Reviews Genetics.

[3]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[4]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[5]  W. Stephan,et al.  Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. , 2005, Molecular biology and evolution.

[6]  A. Betancourt,et al.  Linkage limits the power of natural selection in Drosophila , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[8]  C. Aquadro,et al.  Genome-wide variation in the human and fruitfly: a comparison. , 2001, Current opinion in genetics & development.

[9]  Antonio Barbadilla,et al.  PDA: a pipeline to explore and estimate polymorphism in large DNA databases , 2004, Nucleic Acids Res..

[10]  Michael Y. Galperin The Molecular Biology Database Collection: 2007 update , 2006, Nucleic Acids Res..

[11]  R. Lewontin Directions in evolutionary biology. , 2002, Annual review of genetics.

[12]  R. Lewontin,et al.  The Genetic Basis of Evolutionary Change , 2022 .

[13]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[14]  F. Lewitter,et al.  Nucleotide sequence databases: a gold mine for biologists. , 1999, Trends in biochemical sciences.

[15]  S. Carroll,et al.  The regulatory content of intergenic DNA shapes genome architecture , 2004, Genome Biology.

[16]  Madeline A. Crosby,et al.  FlyBase: genomes by the dozen , 2006, Nucleic Acids Res..

[17]  B. Charlesworth Background selection and patterns of genetic diversity in Drosophila melanogaster. , 1996, Genetical research.

[18]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[19]  Z. Gu,et al.  Evolutionary analyses of the human genome , 2001, Nature.

[20]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[21]  Sònia Casillas,et al.  Purifying selection maintains highly conserved noncoding sequences in Drosophila. , 2007, Molecular biology and evolution.

[22]  M. Cáceres,et al.  Recombination rate predicts inversion size in Diptera. , 1999, Genetics.

[23]  Sònia Casillas,et al.  DPDB: a database for the storage, representation and analysis of polymorphism in the Drosophila genus , 2005, ECCB/JBI.

[24]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[25]  Sònia Casillas,et al.  PDA v.2: improving the exploration and estimation of nucleotide polymorphism in large datasets of heterogeneous DNA , 2006, Nucleic Acids Res..

[26]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[27]  Miquel A. Senar,et al.  MamPol: a database of nucleotide polymorphism in the Mammalia class , 2006, Nucleic Acids Res..

[28]  P. Andolfatto Adaptive evolution of non-coding DNA in Drosophila , 2005, Nature.

[29]  W. Stephan,et al.  Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. , 2003, Genetics.

[30]  M. Kreitman,et al.  Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster , 1983, Nature.

[31]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[32]  P. Andolfatto Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. , 2001, Molecular biology and evolution.

[33]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[34]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[35]  M. Aguadé,et al.  Detecting the footprint of positive selection in a european population of Drosophila melanogaster: multilocus pattern of variation and distance to coding regions. , 2004, Genetics.

[36]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[37]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..