Novel genetic determinants of telomere length from a multi-ethnic analysis of 75,000 whole genome sequences in TOPMed

Telomeres shorten in replicating somatic cells and with age; in human leukocytes, telomere length (TL) is associated with a host of aging-related diseases1,2. To date, 16 genome-wide association studies (GWAS) have identified twenty-three loci associated with leukocyte TL3–18, but prior studies were primarily in individuals of European and Asian ancestry and relied on laboratory assays including Southern Blot and qPCR to quantify TL. Here, we estimated TL bioinformatically, leveraging whole genome sequencing (WGS) of whole blood from n=75,176 subjects in the Trans-Omics for Precision Medicine (TOPMed) Program. We performed the largest multi-ethnic and only WGS-based genome-wide association analysis of TL to date. We identified 22 associated loci (p-value <5×10−8), including 10 novel loci. Three of the novel loci map to genes involved in telomere maintenance and/or DNA damage repair: TERF2, RFWD3, and SAMHD1. Many of the 99 pathways identified in gene set enrichment analysis for the 22 loci (multiple-testing corrected false discovery rate (FDR) <0.05) pertain to telomere biology, including the top five (FDR<1×10−9). Importantly, several loci, including the recently identified TINF2 and ATM6 loci, showed strong ancestry-specific associations.

Nicholette D. Palmer | M. Gladwin | M. Fornage | L. Hou | A. Reiner | D. Levy | S. Redline | G. Abecasis | E. Boerwinkle | D. Nickerson | D. DeMeo | E. Silverman | J. O’Connell | D. Weeks | E. Burchard | W. Sheu | E. Bleecker | C. Albert | P. Ellinor | R. Vasan | Albert Vernon Smith | A. Battle | C. Kooperberg | J. Blangero | M. White | I. Ruczinski | Shih-Jen Hwang | S. Weiss | S. Kardia | A. Levin | B. Psaty | M. Taub | K. Taylor | J. Rotter | L. Becker | T. Thornton | A. Ashley-Koch | B. Cade | J. Brody | A. Aviv | K. Barnes | P. Peyser | M. Conomos | J. Celedón | C. Laurie | B. Custer | L. Cupples | H. Tiwari | Xiuqing Guo | M. Cho | K. North | James G. Wilson | J. Bis | S. Rich | Jennifer A. Smith | Wei Zhao | L. Launer | S. Heckbert | D. Arnett | L. Yanek | A. Correa | N. Palmer | D. Bowden | B. Freedman | B. Mitchell | Y. C. Chang | R. Loos | D. Meyers | E. Kenny | R. Mathias | J. Curran | P. Auer | M. Telen | J. Peralta | R. Kaplan | Simin Liu | J. Perry | M. Andrade | T. Blackwell | L. Williams | M. Garrett | R. Tracy | N. Pankratz | Jiang He | S. Aslibekyan | M. Irvin | Yingze Zhang | S. Kääb | S. Kelly | D. Darbar | C. Laurie | N. Rafaels | W. C. Johnson | A. Mak | A. Moscati | M. Daya | Bertha A Hidalgo | B. Konkle | J. Johnsen | C. Montgomery | M. Shoemaker | L. Raffield | Chunyu Liu | C. Ingram | N. Smith | Moritz F. Sinner | K. Wiggins | M. Nouraie | R. Deka | M. Wheeler | S. McGarvey | J. Su | E. Sabino | R. Minster | J. Weinstock | M. Armanios | A. Keramati | I. Chen | M. Arvanitis | Jennifer A. Brody | H. Gui | Jiwon Lee | L. Fuentes | J. Lane | R. Kumar | Kruthika R. Iyer | TOPMed Hematology | S. Weiss | A. Smith | M. B. Shoemaker | Marios Arvanitis | D. Demeo | A. Smith | K. Iyer | Wei Zhao | B. Psaty | R. Loos | W. C. Johnson | A. Levin | K. Taylor | D. Levy | Wei Zhao | A. Correa | Christie Ingram | Jennifer A. Smith | K. Taylor

[1]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[2]  Junjie Chen,et al.  E3 Ligase RFWD3 Participates in Replication Checkpoint Control* , 2011, The Journal of Biological Chemistry.

[3]  Jian-Min Yuan,et al.  Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies , 2019, Nature Communications.

[4]  Marylyn D. Ritchie,et al.  PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations , 2010, Bioinform..

[5]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[6]  C. Greider Telomeres and senescence: The history, the experiment, the future , 1998, Current Biology.

[7]  S. Mane,et al.  Exome Sequencing Links Mutations in PARN and RTEL1 with Familial Pulmonary Fibrosis and Telomere Shortening , 2015, Nature Genetics.

[8]  Andrew Carroll,et al.  WGSA: an annotation pipeline for human genome sequencing studies , 2015, Journal of Medical Genetics.

[9]  Julie A. Lynch,et al.  Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in Genome-wide Association Studies. , 2019, American journal of human genetics.

[10]  Lilit Nersisyan,et al.  Computel: Computation of Mean Telomere Length from Whole-Genome Next-Generation Sequencing Data , 2015, PloS one.

[11]  C. Harley,et al.  Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths , 2010, Nature Protocols.

[12]  Ting Wang,et al.  Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser , 2013, Bioinform..

[13]  Michael Jones,et al.  Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer , 2017, Nature Genetics.

[14]  David Haussler,et al.  The UCSC Genome Browser database: 2018 update , 2017, Nucleic Acids Res..

[15]  S. Chattopadhyay,et al.  Direct interaction with and activation of p53 by SMAR1 retards cell‐cycle progression at G2/M phase and delays tumor growth in mice , 2003, International journal of cancer.

[16]  Ting Wang,et al.  WashU Epigenome Browser update 2019 , 2019, Nucleic Acids Res..

[17]  Garth N Graham Disparities in Cardiovascular Disease Risk in the United States , 2015, Current cardiology reviews.

[18]  Andrew Carroll,et al.  Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology , 2017, Nature Genetics.

[19]  Lin S. Chen,et al.  Genome-wide association study of telomere length among South Asians identifies a second RTEL1 association signal , 2017, Journal of Medical Genetics.

[20]  W. G. Cochran The combination of estimates from different experiments. , 1954 .

[21]  Gautier Koscielny,et al.  Open Targets Platform: new developments and updates two years on , 2018, Nucleic Acids Res..

[22]  Kevin L. Keys,et al.  Genetic Determinants of Telomere Length in African American Youth , 2018, Scientific Reports.

[23]  Eun Yong Kang,et al.  Identifying Causal Variants at Loci with Multiple Signals of Association , 2014, Genetics.

[24]  T. Lange,et al.  Apollo, an Artemis-Related Nuclease, Interacts with TRF2 and Protects Human Telomeres in S Phase , 2006, Current Biology.

[25]  J. Arthur,et al.  Comparative analysis of whole genome sequencing-based telomere length measurement techniques. , 2017, Methods.

[26]  P. L. Schuck,et al.  Emerging roles of CST in maintaining genome stability and human disease. , 2018, Frontiers in bioscience.

[27]  A. Aviv,et al.  Reflections on telomere dynamics and ageing-related diseases in humans , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[29]  J. Lingner,et al.  Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1 , 2018, Life Science Alliance.

[30]  D. Lin A simple and accurate method to determine genomewide significance for association tests in sequencing studies , 2019, Genetic epidemiology.

[31]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[32]  Anne V. Herdman,et al.  Diabetic ketoacidosis increases extracellular levels of the major inducible 70-kDa heat shock protein. , 2005, Clinical Biochemistry.

[33]  P. D. Jones,et al.  Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length , 2020, American journal of human genetics.

[34]  Bjarni V. Halldórsson,et al.  Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits , 2018, Nature Communications.

[35]  Joshua C. Denny,et al.  R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment , 2014, Bioinform..

[36]  Richard Durbin,et al.  Estimating telomere length from whole genome sequence data , 2014, Nucleic acids research.

[37]  Trevor Hastie,et al.  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. , 2016, American journal of human genetics.

[38]  J. Chang-Claude,et al.  A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk , 2013, Human molecular genetics.

[39]  E. Blackburn,et al.  Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR , 2011, Nucleic acids research.

[40]  E. Gilson,et al.  The Apollo 5′ Exonuclease Functions Together with TRF2 to Protect Telomeres from DNA Repair , 2006, Current Biology.

[41]  Yongyong Shi,et al.  A Genome-Wide Association Study Identifies a Locus on TERT for Mean Telomere Length in Han Chinese , 2014, PloS one.

[42]  Anushya Muruganujan,et al.  Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0) , 2019, Nature Protocols.

[43]  Seunggeun Lee,et al.  A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS , 2017, bioRxiv.

[44]  Tom R. Gaunt,et al.  Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study , 2017 .

[45]  Bruce S Weir,et al.  Model-free Estimation of Recent Genetic Relatedness. , 2016, American journal of human genetics.

[46]  A. Pettitt,et al.  Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci , 2017, Scientific Reports.

[47]  Gill Bejerano,et al.  M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity , 2016, Nature Genetics.

[48]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[49]  R. Pfeiffer,et al.  The Association of Telomere Length and Cancer: a Meta-analysis , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[50]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[51]  A. Reiner,et al.  DCAF4, a novel gene associated with leucocyte telomere length , 2015, Journal of Medical Genetics.

[52]  S. Shete,et al.  A Genome-Wide Association Study Identifies a Locus on Chromosome 14q21 as a Predictor of Leukocyte Telomere Length and as a Marker of Susceptibility for Bladder Cancer , 2011, Cancer Prevention Research.

[53]  M. Fenech,et al.  A quantitative PCR method for measuring absolute telomere length , 2011, Biological Procedures Online.

[54]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[55]  Margaret A. Strong,et al.  Diagnostic utility of telomere length testing in a hospital-based setting , 2018, Proceedings of the National Academy of Sciences.

[56]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[57]  Tamar Sofer,et al.  Genetic association testing using the GENESIS R/Bioconductor package , 2019, Bioinform..

[58]  Hatice Gulcin Ozer,et al.  Whole-exome tumor sequencing study in biliary cancer patients with a response to MEK inhibitors , 2015, Oncotarget.

[59]  Xihong Lin,et al.  Rare-variant association testing for sequencing data with the sequence kernel association test. , 2011, American journal of human genetics.

[60]  Matthew E. B. Hansen,et al.  Shorter telomere length in Europeans than in Africans due to polygenetic adaptation. , 2016, Human molecular genetics.

[61]  Elmar Wahle,et al.  Structural insight into poly(A) binding and catalytic mechanism of human PARN , 2005, The EMBO journal.

[62]  G. Abecasis,et al.  An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data , 2015, Genome research.

[63]  Andy G Lynch,et al.  Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data , 2017, Scientific Reports.

[64]  Seunggeun Lee,et al.  Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole genome sequencing studies , 2018, bioRxiv.

[65]  Bin Tean Teh,et al.  Genome-wide association study identifies multiple risk loci for renal cell carcinoma , 2017, Nature Communications.

[66]  Brent S. Pedersen,et al.  Mosdepth: quick coverage calculation for genomes and exomes , 2017, bioRxiv.

[67]  Latarsha J. Carithers,et al.  The Genotype-Tissue Expression (GTEx) Project. , 2015, Biopreservation and biobanking.

[68]  Anushya Muruganujan,et al.  Large-scale gene function analysis with the PANTHER classification system , 2013, Nature Protocols.

[69]  T. Spector,et al.  A genome-wide association study identifies a novel locus on chromosome 18q12.2 influencing white cell telomere length , 2009, Journal of Medical Genetics.

[70]  E. Epel,et al.  Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection , 2015, Science.

[71]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[72]  Tamar Sofer,et al.  A Fully-Adjusted Two-Stage Procedure for Rank Normalization in Genetic Association Studies , 2018, bioRxiv.

[73]  Andrew D. Johnson,et al.  Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology , 2010, Proceedings of the National Academy of Sciences.

[74]  T. Spector,et al.  Genome-Wide Association Study Identifies Variants in Casein Kinase II (CSNK2A2) to be Associated With Leukocyte Telomere Length in a Punjabi Sikh Diabetic Cohort , 2014, Circulation. Cardiovascular genetics.

[75]  M. Nalls,et al.  Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans , 2012, Human molecular genetics.

[76]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[77]  P. O’Reilly,et al.  Identification of seven loci affecting mean telomere length and their association with disease , 2013, Nature Genetics.

[78]  Dan-Yu Lin,et al.  Meta-analysis for Discovering Rare-Variant Associations: Statistical Methods and Software Programs. , 2015, American journal of human genetics.

[79]  John D. Storey,et al.  Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.

[80]  I. Ruczinski,et al.  Targeted deep sequencing of the PEAR1 locus for platelet aggregation in European and African American families , 2019, Platelets.

[81]  Alan M. Kwong,et al.  A reference panel of 64,976 haplotypes for genotype imputation , 2015, Nature Genetics.

[82]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[83]  Min Zhang,et al.  The CXXC finger 5 protein is required for DNA damage-induced p53 activation , 2009, Science in China Series C: Life Sciences.

[84]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[85]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[86]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[87]  A. Keech,et al.  Shorter telomeres in adults with Type 1 diabetes correlate with diabetes duration, but only weakly with vascular function and risk factors. , 2016, Diabetes research and clinical practice.

[88]  A. Fischer,et al.  Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal–Hreidarsson syndrome , 2010, Proceedings of the National Academy of Sciences.

[89]  David G. Knowles,et al.  Fast Computation and Applications of Genome Mappability , 2012, PloS one.

[90]  Alexander R. Pico,et al.  Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk , 2014, Nature Genetics.

[91]  D. Chasman,et al.  Genome-Wide Association Study of Relative Telomere Length , 2011, PloS one.

[92]  Timothy A Thornton,et al.  Robust Inference of Population Structure for Ancestry Prediction and Correction of Stratification in the Presence of Relatedness , 2015, Genetic epidemiology.

[93]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[94]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[95]  Jianxin Shi,et al.  Optimal methods for meta‐analysis of genome‐wide association studies , 2011, Genetic epidemiology.

[96]  T. Spector,et al.  Common variants near TERC are associated with mean telomere length , 2010, Nature Genetics.

[97]  E. Boerwinkle,et al.  dbNSFP v3.0: A One‐Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice‐Site SNVs , 2016, Human mutation.

[98]  A. Reiner,et al.  Leukocyte telomere length and cardiovascular disease in African Americans: The Jackson Heart Study. , 2017, Atherosclerosis.

[99]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.