An effective potential field approach to FMS holonic heterarchical control

Abstract This paper points out the capabilities of a heterarchical control approach, based on potential fields, to simultaneously solve the problems of dynamic allocation and routing in a real flexible manufacturing system. This paper proposes a “Potential fields” approach, as the key reactive mechanism to handle the transient state of ADACOR designed by Leitao & Restivo (2006) and its real implementation. First, a “Potential fields” model, which takes certain constraints into account, such as dynamic transportation times and limited resource storage capacities is presented. Then, the flexibility and robustness of the approach are highlighted, with a set of scenarios performed in simulation and on a real physical system: the AIP-PRIMECA cell. These results are compared to the results provided by a mixed-integer linear model that was used to compute lower bounds.

[1]  Luc Bongaerts,et al.  Reference architecture for holonic manufacturing systems: PROSA , 1998 .

[2]  Nobuhiro Sugimura,et al.  Multi agent architecture for dynamic incremental process planning in the flexible manufacturing system , 2010, J. Intell. Manuf..

[3]  Sven A. Brueckner,et al.  RETURN FROM THE ANT SYNTHETIC ECOSYSTEMS FOR MANUFACTURING CONTROL , 2000 .

[4]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[5]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[6]  Carlos Eduardo Pereira,et al.  Manufacturing plant control: Challenges and issues , 2007 .

[7]  Philippe Lacomme,et al.  An MILP for scheduling problems in an FMS with one vehicle , 2009, Eur. J. Oper. Res..

[8]  Hendrik Van Brussel,et al.  Multi-agent coordination and control using stigmergy , 2004, Comput. Ind..

[9]  Damien Trentesaux,et al.  Heterarchical production control in manufacturing systems using the potential fields concept , 2012, J. Intell. Manuf..

[10]  Damien Trentesaux,et al.  Self-organization in distributed manufacturing control: state-of-the-art and future trends , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[11]  H. Van Dyke Parunak,et al.  ERIM's Approach to Fine-Grained Agents , 2001 .

[12]  A. Tharumarajah,et al.  Comparison of the bionic, fractal and holonic manufacturing system concepts , 1996 .

[13]  Damien Trentesaux,et al.  Semi-heterarchical Allocation and Routing Processes in FMS Control: A Stigmergic Approach , 2010, J. Intell. Robotic Syst..

[14]  Stefan Bussmann,et al.  Self-organization in manufacturing operations , 2007, CACM.

[15]  Guy Theraulaz,et al.  A Brief History of Stigmergy , 1999, Artificial Life.

[16]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[17]  Damien Trentesaux,et al.  The lifecycle of active and intelligent products: The augmentation concept , 2010, Int. J. Comput. Integr. Manuf..

[18]  Paulo Leitão,et al.  Agent-based distributed manufacturing control: A state-of-the-art survey , 2009, Eng. Appl. Artif. Intell..

[19]  Luis G. Occeña,et al.  Knowledge decomposition for a product design blackboard expert system , 2000, Artif. Intell. Eng..

[20]  Ronald C. Arkin,et al.  Robot Colonies , 1997, Springer US.

[21]  Damien Trentesaux,et al.  Semi-heterarchical control of FMS: From theory to application , 2010, Eng. Appl. Artif. Intell..

[22]  Kanji Ueda,et al.  Synthesis and emergence - research overview , 2001, Artif. Intell. Eng..

[23]  Ismael Ripoll,et al.  A Temporal Blackboard for a Multi-Agent Environment , 1995, Data Knowl. Eng..

[24]  José Barbosa,et al.  Nervousness in Dynamic Self-organized Holonic Multi-agent Systems , 2012, PAAMS.

[25]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[26]  Damien Trentesaux,et al.  Enhancing ADACOR with biology insights towards reconfigurable manufacturing systems , 2011, IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society.

[27]  Yves Sallez The Augmentation Concept: How to Make a Product "Active" during Its Life Cycle , 2012, Service Orientation in Holonic and Multi-Agent Manufacturing Control.

[28]  Fu-Shiung Hsieh,et al.  Analysis of contract net in multi-agent systems , 2006, Autom..

[29]  Kanji Ueda,et al.  An emergent modelling method for dynamic scheduling , 1998, J. Intell. Manuf..

[30]  Abdelghani Bekrar,et al.  A Holonic Approach to Myopic Behavior Correction for the Allocation Process in Flexible-Job Shops Using Recursiveness , 2012, Service Orientation in Holonic and Multi-Agent Manufacturing Control.

[31]  Hendrik Van Brussel,et al.  Towards robust and efficient planning execution , 2008, Eng. Appl. Artif. Intell..

[32]  Weiming Shen,et al.  Applications of agent-based systems in intelligent manufacturing: An updated review , 2006, Adv. Eng. Informatics.

[33]  Syamsiah Mashohor,et al.  A highly interpretable fuzzy rule base using ordinal structure for obstacle avoidance of mobile robot , 2011, Appl. Soft Comput..

[34]  Paulo Leitão,et al.  ADACOR: A holonic architecture for agile and adaptive manufacturing control , 2006, Comput. Ind..

[35]  Gerhard Weiss,et al.  Multi-Agent Systems , 2013 .

[36]  José Barbosa,et al.  Bio-inspired multi-agent systems for reconfigurable manufacturing systems , 2012, Eng. Appl. Artif. Intell..

[37]  Theodor Borangiu,et al.  An implementing framework for holonic manufacturing control with multiple robot-vision stations , 2009, Eng. Appl. Artif. Intell..

[38]  Radu F. Babiceanu,et al.  Development and Applications of Holonic Manufacturing Systems: A Survey , 2006, J. Intell. Manuf..

[39]  Danny Weyns,et al.  A field-based versus a protocol-based approach for adaptive task assignment , 2008, Autonomous Agents and Multi-Agent Systems.

[40]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[41]  Damien Trentesaux,et al.  A multicriteria decision support system for dynamic task allocation in a distributed production activity control structure , 1998, Int. J. Comput. Integr. Manuf..

[42]  Tom Holvoet,et al.  Exploiting the Environment for Coordinating Agent Intentions , 2006, EUMAS.

[43]  Marco Dorigo,et al.  Ant Colonies for Adaptive Routing in Packet-Switched Communications Networks , 1998, PPSN.

[44]  Marco Macchi,et al.  An experimental benchmarking of two multi-agent architectures for production scheduling and control , 2000 .

[45]  Jiří Lažanský,et al.  Industrial applications of agent technologies , 2007 .

[46]  David Naso,et al.  A soft computing approach for task contracting in multi-agent manufacturing control , 2003, Comput. Ind..

[47]  Barbara Hayes-Roth,et al.  A Blackboard Architecture for Control , 1985, Artif. Intell..

[48]  Patrick Pujo,et al.  Integration of a flat holonic form in an HLA environment , 2009, J. Intell. Manuf..

[49]  A Koestler,et al.  Ghost in the Machine , 1970 .

[50]  Damien Trentesaux,et al.  Distributed control of production systems , 2009, Eng. Appl. Artif. Intell..

[51]  Reid G. Smith,et al.  The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver , 1980, IEEE Transactions on Computers.

[52]  Damien Trentesaux,et al.  Integration of the human operator into responsive discrete production management systems , 1998, Eur. J. Oper. Res..

[53]  Damien Trentesaux,et al.  A stigmergic approach for dynamic routing of active products in FMS , 2009, Comput. Ind..