Adaptive trading agent strategies using market experience

v

[1]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[2]  M. Rothschild A two-armed bandit theory of market pricing , 1974 .

[3]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[4]  Richard Granger,et al.  Beyond Incremental Processing: Tracking Concept Drift , 1986, AAAI.

[5]  R. McAfee,et al.  Auctions and Bidding , 1986 .

[6]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1988, IJCAI 1989.

[7]  Manfred K. Warmuth,et al.  The weighted majority algorithm , 1989, 30th Annual Symposium on Foundations of Computer Science.

[8]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[9]  Ronald M. Harstad,et al.  Modeling Competitive Bidding: A Critical Essay , 1994 .

[10]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[11]  R. Weber Making More from Less: Strategic Demand Reduction in the FCC Spectrum Auctions , 1997 .

[12]  Paola Campadelli,et al.  A Boosting Algorithm for Regression , 1997, ICANN.

[13]  Harris Drucker,et al.  Improving Regressors using Boosting Techniques , 1997, ICML.

[14]  P. Cramton The FCC Spectrum Auctions: An Early Assessment , 1997 .

[15]  Thomas D. Jeitschko,et al.  Learning in Sequential Auctions , 1997 .

[16]  James C. Spall,et al.  AN OVERVIEW OF THE SIMULTANEOUS PERTURBATION METHOD FOR EFFICIENT OPTIMIZATION , 1998 .

[17]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[18]  Sebastian Thrun,et al.  Learning to Learn , 1998, Springer US.

[19]  P. Klemperer Auction Theory: A Guide to the Literature , 1999 .

[20]  Tim Finin,et al.  Negotiating agents for supply chain management , 1999, AAAI 1999.

[21]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[22]  A. Tversky,et al.  Choices, Values, and Frames , 2000 .

[23]  Malcolm J. A. Strens,et al.  A Bayesian Framework for Reinforcement Learning , 2000, ICML.

[24]  Vicky Papaioannou,et al.  A critical analysis of bid pricing models and support tool , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[25]  M. Fox,et al.  Agent-Oriented Supply-Chain Management , 2000 .

[26]  Kuldeep Kumar,et al.  Technology for supporting supply chain management: introduction , 2001, CACM.

[27]  Michael P. Wellman,et al.  A Parametrization of the Auction Design Space , 2001, Games Econ. Behav..

[28]  David C. Parkes,et al.  Iterative combinatorial auctions: achieving economic and computational efficiency , 2001 .

[29]  Norman Sadeh,et al.  MASCOT: An agent-based architecture for dynamic supply chain creation and coordination in the internet economy , 2001 .

[30]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[31]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[32]  A. Roth,et al.  Last-Minute Bidding and the Rules for Ending Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet , 2002 .

[33]  Peter Stone,et al.  Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation , 2002, ICML.

[34]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[35]  David A. McAllester,et al.  Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions , 2003, J. Artif. Intell. Res..

[36]  Vijay Kumar,et al.  Online learning in online auctions , 2003, SODA '03.

[37]  Andrew Byde Applying evolutionary game theory to auction mechanism design , 2003, EC '03.

[38]  Richard D. Lawrence A Machine-Learning Approach to Optimal Bid Pricing , 2003 .

[39]  Alok Gupta,et al.  Analysis and Design of Business - to - Consumer Online Auctions , 2003, Manag. Sci..

[40]  Edmund H. Durfee,et al.  Improving learning performance by applying economic knowledge , 2003, EC '03.

[41]  Michael Carl Tschantz,et al.  Botticelli: a supply chain management agent , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[42]  Vincent Conitzer,et al.  Self-interested automated mechanism design and implications for optimal combinatorial auctions , 2004, EC '04.

[43]  Michael P. Wellman,et al.  Distributed Feedback Control for Decision Making on Supply Chains , 2004, ICAPS.

[44]  Doina Precup,et al.  Redagent: winner of TAC SCM 2003 , 2004, SECO.

[45]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[46]  Neil D. Lawrence,et al.  Learning to learn with the informative vector machine , 2004, ICML.

[47]  Brendan Kitts,et al.  Optimal Bidding on Keyword Auctions , 2004, Electron. Mark..

[48]  Michael Carl Tschantz,et al.  A stochastic programming approach to scheduling in TAC SCM , 2004, EC '04.

[49]  GoesPaulo,et al.  User heterogeneity and its impact on electronic auction market design , 2004 .

[50]  Foster J. Provost,et al.  Active Sampling for Class Probability Estimation and Ranking , 2004, Machine Learning.

[51]  Leo Breiman,et al.  Stacked regressions , 2004, Machine Learning.

[52]  Michael Carl Tschantz,et al.  Botticelli: a supply chain management agent designed to optimize under uncertainty , 2004, SECO.

[53]  Tracy Mullen,et al.  PSUTAC : A Trading Agent Designed from Heuristics to Knowledge , 2004 .

[54]  Peter Stone,et al.  Behavior transfer for value-function-based reinforcement learning , 2005, AAMAS '05.

[55]  Norman M. Sadeh,et al.  The supply chain trading agent competition , 2005, Electron. Commer. Res. Appl..

[56]  Avrim Blum,et al.  Near-optimal online auctions , 2005, SODA '05.

[57]  Nicholas R. Jennings,et al.  Designing and Evaluating an Adaptive Trading Agent for Supply Chain Management Applications , 2005 .

[58]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[59]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[60]  Michael P. Wellman,et al.  An analysis of the 2004 supply chain management trading agent competition , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[61]  Sarit Kraus,et al.  Learning Environmental Parameters for the Design of Optimal English Auctions with Discrete Bid Levels , 2005, AMEC@AAMAS/TADA@IJCAI.

[62]  Maria L. Gini,et al.  Identifying and Forecasting Economic Regimes in TAC SCM , 2005, AMEC@AAMAS/TADA@IJCAI.

[63]  David P. Williamson,et al.  An adaptive algorithm for selecting profitable keywords for search-based advertising services , 2006, EC '06.

[64]  Wolfgang Jank,et al.  Exploring auction databases through interactive visualization , 2006, Decis. Support Syst..

[65]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[66]  E. Maasland,et al.  Auction Theory , 2021, Springer Texts in Business and Economics.

[67]  Norman M. Sadeh,et al.  Pricing for customers with probabilistic valuations as a continuous knapsack problem , 2006, ICEC '06.

[68]  Achim Rettinger,et al.  Boosting Expert Ensembles for Rapid Concept Recall , 2006, AAAI.

[69]  Durga L. Shrestha,et al.  Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression , 2006, Neural Computation.

[70]  Adina Magda Florea,et al.  A Dynamic Strategy Agent for Supply Chain Management , 2006, 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[71]  Nicholas R. Jennings,et al.  Designing a successful trading agent for supply chain management , 2006, AAMAS '06.

[72]  Robert Zeithammer Forward-Looking Bidding in Online Auctions , 2005 .

[73]  Peter Stone,et al.  Value-Function-Based Transfer for Reinforcement Learning Using Structure Mapping , 2006, AAAI.

[74]  Learning Market Prices for a Real-time Supply Chain Management Trading Agent ? , 2006 .

[75]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[76]  Raymond J. Mooney,et al.  Mapping and Revising Markov Logic Networks for Transfer Learning , 2007, AAAI.

[77]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[78]  Qiang Yang,et al.  Boosting for transfer learning , 2007, ICML '07.

[79]  R. Vohra,et al.  Algorithmic Game Theory: Sponsored Search Auctions , 2007 .

[80]  J. Langford,et al.  The Epoch-Greedy algorithm for contextual multi-armed bandits , 2007, NIPS 2007.

[81]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[82]  Maria L. Gini,et al.  Efficient Statistical Methods for Evaluating Trading Agent Performance , 2007, AAAI.

[83]  Andrew B. Whinston,et al.  Current Issues in Keyword Auctions , 2008 .

[84]  Victor Naroditskiy,et al.  An Algorithm for Stochastic Multiple-Choice Knapsack Problem and Keywords Bidding , 2008 .

[85]  Wolfgang Jank,et al.  Price formation and its dynamics in online auctions , 2008, Decis. Support Syst..

[86]  Maria Gini,et al.  A survey of agent designs for TAC SCM , 2008, AAAI 2008.

[87]  Alok Gupta,et al.  Predicting Bidders' Willingness to Pay in Online Multiunit Ascending Auctions: Analytical and Empirical Insights , 2008, INFORMS J. Comput..

[88]  Stefan Schöne Auctions in the Electricity Market: Bidding when Production Capacity Is Constrained , 2009 .

[89]  David C. Parkes,et al.  An options-based solution to the sequential auction problem , 2009, Artif. Intell..

[90]  Norman M. Sadeh,et al.  The 2007 procurement challenge: A competition to evaluate mixed procurement strategies , 2009, Electron. Commer. Res. Appl..

[91]  Norman M. Sadeh,et al.  CMieux: Adaptive strategies for competitive supply chain trading , 2009, Electron. Commer. Res. Appl..

[92]  Shotaro Akaho,et al.  TrBagg: A Simple Transfer Learning Method and its Application to Personalization in Collaborative Tagging , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[93]  Dave Cliff,et al.  ZIP60: Further Explorations in the Evolutionary Design of Trader Agents and Online Auction-Market Mechanisms , 2009, IEEE Transactions on Evolutionary Computation.

[94]  Ricardo Vilalta,et al.  Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.

[95]  Michael P. Wellman,et al.  Forecasting market prices in a supply chain game , 2007, AAMAS '07.

[96]  A First Approach to Autonomous Bidding in Ad Auctions , 2010 .

[97]  Amos H. C. Ng,et al.  Agent-based Simulation and Simulation-based Optimisation for Supply Chain Management , 2010 .

[98]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[99]  Michael P. Wellman,et al.  Strategy and mechanism lessons from the first ad auctions trading agent competition , 2010, EC '10.

[100]  Martine De Cock,et al.  Born to trade: A genetically evolved keyword bidder for sponsored search , 2010, IEEE Congress on Evolutionary Computation.

[101]  Yevgeniy Vorobeychik,et al.  A Game Theoretic Bidding Agent for the Ad Auction Game , 2011, ICAART.

[102]  W. Güth,et al.  Loss Aversion and Learning to Bid , 2009 .

[103]  S. Buffett,et al.  An Algorithm for Procurement in Supply-Chain Management , 2022 .