Monte Carlo filtering on Lie groups
暂无分享,去创建一个
[1] K. Elworthy. Stochastic Differential Equations on Manifolds , 1982 .
[2] K. D. Elworthy. Stochastic Differential Equations on Manifolds: DIFFUSIONS , 1982 .
[3] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[4] Lydia E. Kavraki,et al. A randomized kinematics‐based approach to pharmacophore‐constrained conformational search and database screening , 2000 .
[5] Anuj Srivastava,et al. A Bayesian approach to geometric subspace estimation , 2000, IEEE Trans. Signal Process..
[6] H. Sorenson,et al. Recursive bayesian estimation using gaussian sums , 1971 .
[7] Sanjoy K. Mitter,et al. EXISTENCE AND NON-EXISTENCE OF FINITE DIMENSIONAL FILTERS 1 , 2022 .
[8] Michael Isard,et al. Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.
[9] J. Geweke,et al. On markov chain monte carlo methods for nonlinear and non-gaussian state-space models , 1999 .
[10] Bernard Hanzon,et al. A differential geometric approach to nonlinear filtering: the projection filter , 1998, IEEE Trans. Autom. Control..
[11] Rong Chen,et al. A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.
[12] P. Perona,et al. Motion estimation via dynamic vision , 1996, IEEE Trans. Autom. Control..
[13] A. Logothetis,et al. Markov chain Monte Carlo methods for tracking a maneuvering target in clutter , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).