Exponential Lower Bounds for Polytopes in Combinatorial Optimization

We solve a 20-year old problem posed by Yannakakis and prove that no polynomial-size linear program (LP) exists whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.

[1]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[2]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[3]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[4]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[5]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[6]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[7]  Mihalis Yannakakis,et al.  Expressing Combinatorial Optimization Problems by Linear Programs (Extended Abstract) , 1988, Symposium on the Theory of Computing.

[8]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[9]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[10]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[11]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[12]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[13]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[14]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[15]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[16]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[17]  Michael E. Saks,et al.  Communication Complexity and Combinatorial Lattice Theory , 1993, J. Comput. Syst. Sci..

[18]  G. Ziegler Lectures on Polytopes , 1994 .

[19]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[20]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[21]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[22]  J. Håstad Clique is hard to approximate within n 1-C , 1996 .

[23]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[24]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[25]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[26]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[27]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .

[28]  Ronald de Wolf,et al.  Quantum communication and complexity , 2002, Theor. Comput. Sci..

[29]  Ronald de Wolf,et al.  Nondeterministic Quantum Query and Communication Complexities , 2003, SIAM J. Comput..

[30]  László Lovász,et al.  Semidefinite Programs and Combinatorial Optimization , 2003 .

[31]  Ronald de Wolf,et al.  Exponential lower bound for 2-query locally decodable codes via a quantum argument , 2002, STOC '03.

[32]  B. Reed,et al.  Recent advances in algorithms and combinatorics , 2003 .

[33]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[34]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Dorit Aharonov,et al.  Lattice Problems in NP cap coNP , 2004, FOCS.

[36]  Scott Aaronson,et al.  Lower bounds for local search by quantum arguments , 2003, STOC '04.

[37]  Dorit Aharonov,et al.  Lattice problems in NP ∩ coNP , 2005, JACM.

[38]  Béla Bollobás,et al.  Proving Integrality Gaps without Knowing the Linear Program , 2006, Theory Comput..

[39]  Toniann Pitassi,et al.  Rank Bounds and Integrality Gaps for Cutting Planes Procedures , 2006, Theory Comput..

[40]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  Madhur Tulsiani,et al.  Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut , 2007, STOC '07.

[43]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[44]  Claire Mathieu,et al.  Linear programming relaxations of maxcut , 2007, SODA.

[45]  T. Pitassi,et al.  Integrality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver Hierarchy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[46]  Eyal Kushilevitz,et al.  The Communication Complexity of Set-Disjointness with Small Sets and 0-1 Intersection , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[47]  Moses Charikar,et al.  Integrality gaps for Sherali-Adams relaxations , 2009, STOC '09.

[48]  Kanstantsin Pashkovich Symmetry in Extended Formulations of the Permutahedron , 2009 .

[49]  Ronald de Wolf,et al.  Quantum Proofs for Classical Theorems , 2009, Theory Comput..

[50]  Eyal Kushilevitz,et al.  On the complexity of communication complexity , 2009, STOC '09.

[51]  Madhur Tulsiani,et al.  Optimal Sherali-Adams Gaps from Pairwise Independence , 2009, APPROX-RANDOM.

[52]  Avner Magen,et al.  Extending SDP Integrality Gaps to Sherali-Adams with Applications to Quadratic Programming and MaxCutGain , 2010, IPCO.

[53]  Laurence A. Wolsey,et al.  Reformulation and Decomposition of Integer Programs , 2009, 50 Years of Integer Programming.

[54]  Hao Huang,et al.  A counterexample to the Alon-Saks-Seymour conjecture and related problems , 2010, Comb..

[55]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[56]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2010, 4OR.

[57]  Dirk Oliver Theis,et al.  Symmetry Matters for the Sizes of Extended Formulations , 2010, IPCO.

[58]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[59]  Toniann Pitassi,et al.  Integrality Gaps of 2-o(1) for Vertex Cover SDPs in the Lov[a-acute]sz--Schrijver Hierarchy , 2010, SIAM J. Comput..

[60]  V. Kaibel Extended Formulations in Combinatorial Optimization , 2011, 1104.1023.

[61]  Samuel Fiorini,et al.  Approximation Limits of Linear Programs (Beyond Hierarchies) , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[62]  Troy Lee,et al.  Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix , 2012 .

[63]  Hans Raj Tiwary,et al.  Extended Formulations, Nonnegative Factorizations, and Randomized Communication Protocols , 2012, ISCO.

[64]  Shengyu Zhang,et al.  Quantum strategic game theory , 2010, ITCS '12.

[65]  Rahul Jain,et al.  Correlation/Communication complexity of generating bipartite states , 2012, ArXiv.

[66]  Prasad Raghavendra,et al.  Approximate Constraint Satisfaction Requires Large LP Relaxations , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[67]  Hans Raj Tiwary,et al.  On the extension complexity of combinatorial polytopes , 2013, Math. Program..

[68]  Rekha R. Thomas,et al.  Lifts of Convex Sets and Cone Factorizations , 2011, Math. Oper. Res..

[69]  Mark Braverman,et al.  An information complexity approach to extended formulations , 2013, STOC '13.

[70]  Sebastian Pokutta,et al.  A note on the extension complexity of the knapsack polytope , 2013, Oper. Res. Lett..

[71]  Hans Raj Tiwary,et al.  Generalized probabilistic theories and conic extensions of polytopes , 2013, ArXiv.

[72]  Thomas Rothvoß,et al.  Some 0/1 polytopes need exponential size extended formulations , 2011, Math. Program..

[73]  Rahul Jain,et al.  Efficient Protocols for Generating Bipartite Classical Distributions and Quantum States , 2013, IEEE Transactions on Information Theory.

[74]  Samuel Fiorini,et al.  Combinatorial bounds on nonnegative rank and extended formulations , 2011, Discret. Math..

[75]  Sebastian Pokutta,et al.  Common Information and Unique Disjointness , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[76]  Pablo A. Parrilo,et al.  Exponential lower bounds on fixed-size psd rank and semidefinite extension complexity , 2013, ArXiv.

[77]  Thomas Rothvoß,et al.  The matching polytope has exponential extension complexity , 2013, STOC.

[78]  Kanstantsin Pashkovich Tight Lower Bounds on the Sizes of Symmetric Extensions of Permutahedra and Similar Results , 2014, Math. Oper. Res..

[79]  Sebastian Pokutta,et al.  On the existence of 0/1 polytopes with high semidefinite extension complexity , 2013, Math. Program..

[80]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[81]  Volker Kaibel,et al.  A Short Proof that the Extension Complexity of the Correlation Polytope Grows Exponentially , 2013, Discret. Comput. Geom..

[82]  Samuel Fiorini,et al.  Average case polyhedral complexity of the maximum stable set problem , 2016, Math. Program..

[83]  Rahul Jain,et al.  Information-theoretic approximations of the nonnegative rank , 2016, computational complexity.