Alloy negative electrodes for Li-ion batteries.

[1]  M. Cerbelaud,et al.  Brownian dynamics simulations of colloidal suspensions containing polymers as precursors of composite electrodes for lithium batteries. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[2]  Jung-Ki Park,et al.  SEI Layer Formation on Amorphous Si Thin Electrode during Precycling , 2007 .

[3]  C. Wolverton,et al.  First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. , 2012, Journal of the American Chemical Society.

[4]  Trevor A. Tyson,et al.  Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in Li-ion batteries. , 2011, Journal of the American Chemical Society.

[5]  Brian A. Korgel,et al.  Hydrogenated Amorphous Silicon (a-Si:H) Colloids , 2010 .

[6]  T. Jow,et al.  Alloy/conducting-polymer composite electrodes: electrolytes, cathodes, and morphology , 1989 .

[7]  G. Taillades,et al.  Metal-based very thin film anodes for lithium ion microbatteries , 2002 .

[8]  Byungwoo Park,et al.  Electrochemical characteristics of Mg–Ni alloys as anode materials for secondary Li batteries , 2000 .

[9]  J. Dahn,et al.  Studies of Si1 − x C x Electrode Materials Prepared by High-Energy Mechanical Milling and Combinatorial Sputter Deposition , 2007 .

[10]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[11]  Zonghai Chen,et al.  Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers , 2003 .

[12]  G. Pistoia,et al.  Effect of electrode porosity on the performance of natural Brazilian graphite electrodes , 1995 .

[13]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[14]  M. Wagner,et al.  The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes , 2001 .

[15]  G. Taillades,et al.  Silver : High performance anode for thin film lithium ion batteries , 2004 .

[16]  Soo-Jin Park,et al.  Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching , 2011 .

[17]  J. Dahn,et al.  In Situ AFM Measurements of the Expansion and Contraction of Amorphous Sn-Co-C Films Reacting with Lithium , 2007 .

[18]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[19]  J. Dahn,et al.  Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder , 2008 .

[20]  Jeff Dahn,et al.  An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn30Co30C40 , 2010 .

[21]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[22]  Khalil Amine,et al.  Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries , 2001 .

[23]  E. Kaxiras,et al.  Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries , 2012 .

[24]  B. Scrosati,et al.  Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’ reduction process , 2013 .

[25]  T. D. Hatchard,et al.  Electrochemical Performance of SiAlSn Films Prepared by Combinatorial Sputtering , 2003 .

[26]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[27]  S. D. James,et al.  Structure and Anodic Discharge Behavior of Lithium‐Boron Alloys in the LiCl ‐ KCl Eutectic Melt(II) , 1976 .

[28]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[29]  Qi Guo,et al.  Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries , 2013 .

[30]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[31]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[32]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[33]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[34]  Hansu Kim,et al.  The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li‐Ion Batteries , 1999 .

[35]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[36]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[37]  The B-Li (Boron-Lithium) system , 2003 .

[38]  J. Dahn,et al.  Electrochemical Reaction of the Si1 − x Zn x Binary System with Li , 2005 .

[39]  J. Dahn,et al.  Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries , 2006 .

[40]  J. Dahn,et al.  Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects , 2001 .

[41]  M. Whittingham,et al.  Electrochemical Behavior of the Amorphous Tin–Cobalt Anode , 2010 .

[42]  Claus Daniel,et al.  Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission , 2010 .

[43]  Kai Xie,et al.  Mechanism of lithium storage in SiOC composite anodes , 2011 .

[44]  J. Dahn,et al.  A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i , 2006 .

[45]  P. Kumta,et al.  Silicon and carbon based composite anodes for lithium ion batteries , 2006 .

[46]  B. Scrosati,et al.  Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling , 2007 .

[47]  Doron Aurbach,et al.  The effect of pressure on the electroanalytical response of graphite anodes and LiCoO2 cathodes for Li-ion batteries , 2001 .

[48]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[49]  R. Hu,et al.  Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al–Sn system , 2009 .

[50]  Michael D. Fleischauer,et al.  Combinatorial Investigations of Si-M ( M = Cr + Ni , Fe , Mn ) Thin Film Negative Electrode Materials , 2005 .

[51]  V. Srinivasan,et al.  Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries , 2011, 1108.0340.

[52]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[53]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[54]  Meng Gu,et al.  Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4. , 2013, ACS nano.

[55]  J. Dahn,et al.  Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes , 2007 .

[56]  Yuki Yamada,et al.  Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO , 2010 .

[57]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[58]  E. Frazer Electrochemical formation of lithium-aluminium alloys in propylene carbonate electrolytes , 1981 .

[59]  Hailei Zhao,et al.  Microcrystalline SnSb Alloy Powder as Lithium Storage Material for Rechargeable Lithium-Ion Batteries , 2006 .

[60]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[61]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[62]  J. Morales,et al.  3D Gold Nanocrystal Arrays: A Framework for Reversible Lithium Storage , 2010 .

[63]  M. L. Focarete,et al.  High-performance Sn@carbon nanocomposite anode for lithium batteries , 2013 .

[64]  Doron Aurbach,et al.  Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes , 2007 .

[65]  Yuan Fang,et al.  Investigation of immiscible Sn–Zn coatings with two-layer microstructure as anode material for Li-ion battery , 2012, Journal of Applied Electrochemistry.

[66]  Meng Gu,et al.  In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. , 2012, ACS nano.

[67]  J. Dahn,et al.  In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass , 1999 .

[68]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[69]  J. Dahn,et al.  Comparison of Mechanically Milled and Sputter Deposited Tin–Cobalt–Carbon Alloys Using Small Angle Neutron Scattering , 2009 .

[70]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[71]  B. Scrosati,et al.  The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells , 2008 .

[72]  Albert L. Lipson,et al.  Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene , 2012 .

[73]  J. Dahn,et al.  Ab initio calculation of the lithium-tin voltage profile , 1998 .

[74]  Claus Daniel,et al.  A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery , 2011 .

[75]  Doron Aurbach,et al.  Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[76]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[77]  Nae-Lih Wu,et al.  Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy , 2011 .

[78]  Jaephil Cho,et al.  3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. , 2014, ACS nano.

[79]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[80]  T. Ohzuku,et al.  Monitoring of Particle Fracture by Acoustic Emission during Charge and Discharge of Li / MnO2 Cells , 1997 .

[81]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[82]  A. Fletcher,et al.  The Lithium‐Boron Alloy Anode in Molten Nitrate Electrolytes , 1984 .

[83]  K. Striebel,et al.  Electrochemical Studies of Nanoncrystalline Mg2Si Thin Film Electrodes Prepared by Pulsed Laser Deposition , 2003 .

[84]  T. D. Hatchard,et al.  Study of the Electrochemical Performance of Sputtered Si1 − x Sn x Films , 2004 .

[85]  Christopher S. Johnson,et al.  Structural and mechanistic features of intermetallic materials for lithium batteries , 2000 .

[86]  J. Morales,et al.  Lead-based systems as suitable anode materials for Li-ion batteries , 2003 .

[87]  Ki-tae Kim,et al.  Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell , 2009 .

[88]  Z. Wen,et al.  Electrochemical performances of silicon electrode with silver additives , 2006 .

[89]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[90]  Jing Ning,et al.  Reduced Graphene Oxide‐Mediated Growth of Uniform Tin‐Core/Carbon‐Sheath Coaxial Nanocables with Enhanced Lithium Ion Storage Properties , 2012, Advanced materials.

[91]  K. Edström,et al.  Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries , 2007 .

[92]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[93]  M. Shikano,et al.  Gold model anodes for Li-ion batteries: Single crystalline systems studied by in situ X-ray diffraction , 2008 .

[94]  Hervé Martinez,et al.  Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive , 2012 .

[95]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[96]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[97]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[98]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[99]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[100]  Z. Fu,et al.  Nanostructured NiSi thin films as a new anode material for lithium ion batteries , 2011 .

[101]  J. Janek,et al.  Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. , 2013, ACS applied materials & interfaces.

[102]  J. Dahn,et al.  Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature , 2006 .

[103]  M. Wagner,et al.  Electrolyte Decomposition Reactions on Tin- and Graphite-Based Anodes are Different , 2004 .

[104]  Matsuhiko Nishizawa,et al.  Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries , 2001 .

[105]  J. Tirado,et al.  Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi , 2002 .

[106]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[107]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[108]  J. Dahn,et al.  Structural and electrochemical studies of (SnxCo1−x)60C40 alloys prepared by mechanical attriting , 2009 .

[109]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[110]  Seung‐Wan Song,et al.  Studies of interfacial reactions on thin film electrodes of Sn during initial cycling using infrared spectroscopy , 2009 .

[111]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[112]  Deren Yang,et al.  Ni3Si2–Si nanowires on Ni foam as a high-performance anode of Li-ion batteries , 2011 .

[113]  Seung M. Oh,et al.  Preparation of core-shell Si/NiSi2/carbon composite and its application to lithium secondary batteries , 2006 .

[114]  Noriyuki Tamura,et al.  Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries , 2004 .

[115]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[116]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[117]  A. Guibert,et al.  Preparation and characterization of lithium-boron alloys: electrochemical studies as anodes in molten salt media, and comparison with pure lithium-involving systems , 1992 .

[118]  R. Kataoka,et al.  Development of Li-Ion Rechargeable Battery Using SnC2O4-Coated Si Anode Material and Its Safety Evaluation , 2013 .

[119]  Shinichi Komaba,et al.  Study on polymer binders for high-capacity SiO negative electrode of Li-Ion batteries , 2011 .

[120]  Nobuyuki Imanishi,et al.  Advanced composite anodes containing lithium cobalt nitride for secondary lithium battery , 2002 .

[121]  Z. Wen,et al.  Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating , 2009 .

[122]  Seung M. Oh,et al.  Thermo-electrochemical activation of Cu3Sn negative electrode for lithium-ion batteries , 2011 .

[123]  Yong‐Mook Kang,et al.  Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries , 2006 .

[124]  Z. Fu,et al.  Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries , 2013 .

[125]  H. Sakaguchi,et al.  Ce–Sn intermetallic compounds as new anode materials for rechargeable lithium batteries , 2003 .

[126]  S. Dallek,et al.  Thermal Analysis of Lithium‐Boron Alloys , 1979 .

[127]  T. Saito,et al.  Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries , 2013 .

[128]  J. Dahn,et al.  Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry , 2012 .

[129]  J. Dahn,et al.  Effect of annealing on nanostructured Sn30Co30C40 prepared by mechanical attrition , 2009 .

[130]  H. X. Yang,et al.  Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries , 2003 .

[131]  Yang Ren,et al.  In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery , 2013 .

[132]  J. Dahn,et al.  Nanocomposites in the Sn–Mn–C system produced by mechanical alloying , 2000 .

[133]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[134]  Deren Yang,et al.  Improved cyclic stability of Mg2Si by direct carbon coating as anode materials for lithium-ion batteries , 2014 .

[135]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[136]  J. Dahn,et al.  Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries , 2010 .

[137]  Akinori Kita,et al.  Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes , 2011 .

[138]  G. Ouvrard,et al.  On the Nature of Li Insertion in Tin Composite Oxide Glasses , 1999 .

[139]  Seung M. Oh,et al.  Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode , 2007 .

[140]  Matthieu Dubarry,et al.  Identify capacity fading mechanism in a commercial LiFePO4 cell , 2009 .

[141]  J. Dahn,et al.  Single Bath, Pulsed Electrodeposition of Copper-Tin Alloy Negative Electrodes for Lithium-ion Batteries , 2003 .

[142]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[143]  Jason Graetz,et al.  Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In‐Situ Synchrotron X‐Ray Diffraction and Electron Energy‐Loss Spectroscopy , 2013 .

[144]  M. Whittingham,et al.  Characterization of Amorphous and Crystalline Tin–Cobalt Anodes , 2007 .

[145]  Qiang Ru,et al.  First-principles calculations and experimental studies of Sn-Zn alloys as negative electrode materials for lithium-ion batteries , 2011 .

[146]  Seungho Yu,et al.  Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries , 2014 .

[147]  F. E. Little,et al.  Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes , 2001 .

[148]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[149]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[150]  Sun‐Ho Kang,et al.  Implementation and Characterization of Silicon Anode with Metal Alloy Inactive Matrix for Lithium-Ion Secondary Batteries , 2012 .

[151]  J. Tarascon,et al.  Decomposition of ethylene carbonate on electrodeposited metal thin film anode , 2010 .

[152]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[153]  J. Besenhard,et al.  Anodic materials for rechargeable Li-batteries , 2002 .

[154]  H. X. Yang,et al.  Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries , 2008 .

[155]  C. Villevieille,et al.  Direct evidence of morphological changes in conversion type electrodes in Li-ion battery by acoustic emission , 2010 .

[156]  K. Edström,et al.  Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. , 2013, Journal of the American Chemical Society.

[157]  H. Hng,et al.  Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage , 2014 .

[158]  Wei-Jun Zhang,et al.  Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries , 2011 .

[159]  J. Dahn,et al.  Combinatorial Studies of Si1−xOx as a Potential Negative Electrode Material for Li-Ion Battery Applications , 2013 .

[160]  Cheol‐Min Park,et al.  Quartz (SiO2): a new energy storage anode material for Li-ion batteries , 2012 .

[161]  J. C. Burns,et al.  Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms , 2011 .

[162]  J. Dahn,et al.  Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithium‐Ion Batteries , 1997 .

[163]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[164]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[165]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[166]  Adam T. Timmons,et al.  In Situ AFM Measurements of the Expansion of Nanostructured Sn–Co–C Films Reacting with Lithium , 2009 .

[167]  J. Dahn,et al.  Comparison of Thermal Stability Between Lithiated Sn30Co30C40, LiSi, or Li0.81C6 and 1 M LiPF6 EC:DEC Electrolyte at High Temperature , 2008 .

[168]  H. Lee,et al.  Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying , 2002 .

[169]  G. Destouni,et al.  Renewable Energy , 2010, AMBIO.

[170]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[171]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[172]  T. Fujieda,et al.  Cycling behaviour of electrodeposited zinc alloy electrode for secondary lithium batteries , 1992 .

[173]  Heechul Jung,et al.  Nanosize Si anode embedded in super-elastic nitinol (Ni–Ti) shape memory alloy matrix for Li rechargeable batteries , 2011 .

[174]  Vincent S. Battaglia,et al.  Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage , 2011 .

[175]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[176]  M. A. Kulandainathan,et al.  Lithium insertion studies on boron-doped diamond as a possible anode material for lithium batteries , 2008 .

[177]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[178]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[179]  J. Dahn,et al.  Al–Si Thin-Film Negative Electrodes for Li-Ion Batteries , 2008 .

[180]  J. C. Burns,et al.  Comparative Study of Vinyl Ethylene Carbonate (VEC) and Vinylene Carbonate (VC) in LiCoO2/Graphite Pouch Cells Using High Precision Coulometry and Electrochemical Impedance Spectroscopy Measurements on Symmetric Cells , 2014 .

[181]  C. Wolverton,et al.  Studies of LaSn3 as a Negative Electrode for Lithium-Ion Batteries , 2009 .

[182]  A. Hirano,et al.  Electrochemical behaviors of Si/C composite synthesized from F-containing precursors , 2009 .

[183]  J. Dahn,et al.  Investigation of the Irreversible Capacity Loss in the Lithium-Rich Oxide Li[Li1/5Ni1/5Mn3/5]O2 , 2011 .

[184]  Mark W. Verbrugge,et al.  Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries , 2011 .

[185]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[186]  Zi-Feng Ma,et al.  Cu5Si–Si/C composites for lithium-ion battery anodes , 2006 .

[187]  K. Amine,et al.  New anode material based on SiO-SnxCoyCz for lithium batteries , 2012 .

[188]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[189]  J. Dahn,et al.  Comparison of the Reaction of Li x Si or Li0.81C6 with 1 M LiPF6 EC:DEC Electrolyte at High Temperature , 2006 .

[190]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[191]  X. Zhao,et al.  Electrochemical properties of some Sb or Te based alloys for candidate anode materials of lithium-ion batteries , 2001 .

[192]  J. Dahn,et al.  The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys , 2003 .

[193]  K. Iwamoto,et al.  Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries , 2013 .

[194]  H. R. Philipp,et al.  Optical and bonding model for non-crystalline SiOx and SiOxNy materials , 1972 .

[195]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[196]  Jean-Louis Bobet,et al.  Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2–carbon composites negative electrode for lithium-ion batteries , 2011 .

[197]  X. Qu,et al.  Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries , 2012 .

[198]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[199]  J. Dahn,et al.  Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass , 1997 .

[200]  B. Scrosati,et al.  An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries , 2007 .

[201]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[202]  G. Brady A Study of Amorphous SiO , 1959 .

[203]  Cheol‐Min Park,et al.  Nanostructured Zn-based composite anodes for rechargeable Li-ion batteries , 2012 .

[204]  R. Huggins,et al.  The formation and properties of amorphous silicon as negative electrode reactant in lithium systems , 2003 .

[205]  J. Tarascon,et al.  Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li , 2005 .

[206]  J. Yang,et al.  Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .

[207]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[208]  J. Dahn,et al.  Studies of CoSn grains in the carbon matrix structure of nanostructured tin–cobalt–carbon , 2012 .

[209]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[210]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[211]  B. Lucht,et al.  Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes , 2012 .

[212]  A. Watanabe,et al.  Energetics of compounds related to Mg2Si as an anode material for lithium-ion batteries using first principle calculations , 2011 .

[213]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[214]  Z. Du,et al.  High Energy Density Calendered Si Alloy/Graphite Anodes , 2014 .

[215]  J. Besenhard,et al.  Synthesis and Characterization of Nanoporous NiSi-Si Composite Anode for Lithium-Ion Batteries , 2007 .

[216]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[217]  Y. Yoon,et al.  Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries , 2011 .

[218]  Joongpyo Shim,et al.  Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries , 2003 .

[219]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[220]  Doron Aurbach,et al.  Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries , 2002 .

[221]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[222]  J. Tarascon,et al.  In Situ Observation and Long-Term Reactivity of Si/C/CMC Composites Electrodes for Li-Ion Batteries , 2011 .

[223]  Sung-Man Lee,et al.  Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries , 2008 .

[224]  Fredrik J. Lindgren,et al.  Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy , 2012 .

[225]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[226]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[227]  B. Simon,et al.  119Sn Mössbauer study of LixSn alloys prepared electrochemically , 1999 .

[228]  D. Guyomard,et al.  Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries , 2012 .

[229]  T. Ohzuku,et al.  Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: “SiO”-Carbon Composite , 2011 .

[230]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[231]  J. Richardson,et al.  X-ray and neutron diffraction studies on "Li4.4Sn". , 2003, Inorganic chemistry.

[232]  M. Zheng,et al.  Preparation and performance of nickel–tin alloys used as anodes for lithium-ion battery , 2004 .

[233]  J. Yamaki,et al.  Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte , 2010 .

[234]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[235]  J. Dahn,et al.  Importance of nanostructure for high capacity negative electrode materials for Li-ion batteries , 2010 .

[236]  J. Dahn,et al.  In Situ X‐Ray Study of the Electrochemical Reaction of Li with η ′ ‐ Cu6Sn5 , 2000 .

[237]  N. Choi,et al.  Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder , 2008 .

[238]  Xianglong Li,et al.  Graphene‐Confined Sn Nanosheets with Enhanced Lithium Storage Capability , 2012, Advanced materials.

[239]  F. Huang CHAPTER 1: WHAT IS BIOMASS , 2014 .

[240]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[241]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[242]  Thomas A. Yersak,et al.  A Highly Reversible Nano‐Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix , 2012 .

[243]  Justin T. Harris,et al.  Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries , 2012 .

[244]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[245]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[246]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[247]  M. Yoshio,et al.  A chemometric investigation of the effect of the process parameters on the performance of mixed Si/C electrodes , 2006 .

[248]  S. Moon,et al.  Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries , 2009 .

[249]  Jong Min Kim,et al.  Highly Interconnected Si Nanowires for Improved Stability Li‐Ion Battery Anodes , 2011 .

[250]  T. Fukunaga,et al.  Structural Analysis of Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering , 2004 .

[251]  M. Nagamori,et al.  Gibbs free energies of formation of amorphous Si2O3, SiO and Si2O , 1995 .

[252]  B. Landi,et al.  Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). , 2013, Nano letters.

[253]  M. Thackeray,et al.  Copper-tin anodes for rechargeable lithium batteries : an example of the matrix effect in an intermetallic system. , 1998 .

[254]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[255]  T. Aselage The coexistence of silicon borides with boron-saturated silicon: Metastability of SiB_3 , 1998 .

[256]  R. Jolly,et al.  The recycling of lead-acid batteries: production of lead and polypropylene , 1994 .

[257]  B. Albert The Structure Chemistry of Boron‐Rich Solids of the Alkali Metals , 2000 .

[258]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[259]  Jae‐Hun Kim,et al.  Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries , 2005 .

[260]  Yi Cui,et al.  Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes , 2013, Scientific Reports.

[261]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[262]  N. Chen,et al.  A novel FeAs anode material for lithium ion battery , 2011 .

[263]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[264]  Structural stability in the Al–Li–Si system , 2007 .

[265]  Yunbo Zhang,et al.  Contact‐Engineered and Void‐Involved Silicon/Carbon Nanohybrids as Lithium‐Ion‐Battery Anodes , 2013, Advanced materials.

[266]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[267]  Yi Cui,et al.  First-principles approaches to simulate lithiation in silicon electrodes , 2013, 1303.0933.

[268]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[269]  S. Dou,et al.  Study of silicon/polypyrrole composite as anode materials for Li-ion batteries , 2005 .

[270]  Toru Tabuchi,et al.  Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells , 2005 .

[271]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[272]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[273]  Jung-Ki Park,et al.  Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode , 2010 .

[274]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[275]  X. B. Zhang,et al.  Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling , 1998 .

[276]  J. Dahn,et al.  Tin‐based materials as negative electrodes for Li‐ion batteries: Combinatorial approaches and mechanical methods , 2010 .

[277]  B. Way,et al.  Nanodispersed silicon in pregraphitic carbons , 1995 .

[278]  Kozo Watanabe,et al.  Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion , 2000 .

[279]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[280]  N. Imanishi,et al.  Electrochemical studies of the Si-based composites with large capacity and good cycling stability as anode materials for rechargeable lithium ion batteries , 2005 .

[281]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .

[282]  N. Shimoi,et al.  Improvement in Si active material particle performance for lithium-ion batteries by surface modification of an inductivity coupled plasma-chemical vapor deposition , 2012 .

[283]  Yong Wang,et al.  Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage , 2009 .

[284]  J. Wolfenstine CaSi2 as an anode for lithium-ion batteries , 2003 .

[285]  Noriyuki Tamura,et al.  Advanced structures in electrodeposited Tin base negative electrodes for lithium secondary batteries , 2003 .

[286]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[287]  P. Kumta,et al.  Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries , 2007 .

[288]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[289]  Jing Li,et al.  In Situ 119Sn Mössbauer Effect Study of the Reaction of Lithium with Si Using a Sn Probe , 2009 .

[290]  P. Moreau,et al.  The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries , 2011 .

[291]  Seung‐Wan Song,et al.  Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization , 2009 .

[292]  Maria Letizia Terranova,et al.  Si/C hybrid nanostructures for Li-ion anodes: An overview , 2014 .

[293]  N. Choi,et al.  Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte , 2007 .

[294]  S. Trussler,et al.  In Situ Investigations of SEI Layer Growth on Electrode Materials for Lithium-Ion Batteries Using Spectroscopic Ellipsometry , 2012 .

[295]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[296]  Christopher M Wolverton,et al.  High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .

[297]  U. Paik,et al.  Nitridated Si-Ti-Ni alloy as an anode for Li rechargeable batteries , 2014 .

[298]  J. A. Ritter,et al.  Palladium-Microencapsulated Graphite as the Negative Electrode in Li-ion Cells , 2000 .

[299]  N. Hudak,et al.  Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium , 2012 .

[300]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[301]  Investigations on an aqueous lithium secondary cell , 1995 .

[302]  X. Qu,et al.  Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries , 2012 .

[303]  Mijung Noh,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery , 2005 .

[304]  Hannah M. Dahn,et al.  Activation Energies of Crystallization Events in Electrochemically Lithiated Silicon , 2011 .

[305]  M. Whittingham,et al.  The nanostructure of the Si–Al eutectic and its use in lithium batteries , 2013 .

[306]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[307]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[308]  P. Moreau,et al.  A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries , 2013 .

[309]  Sung K. Kang,et al.  Oxidation study of pure tin and its alloys via electrochemical reduction analysis , 2005 .

[310]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[311]  Qian Sun,et al.  Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries , 2008 .

[312]  J. Dahn,et al.  Comparison of mechanically alloyed and sputtered tin–cobalt–carbon as an anode material for lithium-ion batteries , 2008 .

[313]  T. Hatchard,et al.  An Investigation of the C-Zn System as Lithium-Ion Battery Anode Materials , 2014 .

[314]  Goojin Jeong,et al.  Multifunctional TiO2 coating for a SiO anode in Li-ion batteries , 2012 .

[315]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[316]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[317]  J. Dahn,et al.  The Impact of the Addition of Rare Earth Elements to Si1 − x Sn x Negative Electrode Materials for Li-Ion Batteries , 2006 .

[318]  E. Cairns,et al.  Magnesium silicide as a negative electrode material for lithium-ion batteries , 2002 .

[319]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[320]  Pradeep R. Guduru,et al.  In situ measurement of biaxial modulus of Si anode for Li-ion batteries , 2010 .

[321]  Cheol‐Min Park,et al.  A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries , 2009 .

[322]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[323]  J. Dahn,et al.  Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods , 1998 .

[324]  P. Moreau,et al.  New insights into the silicon-based electrode's irreversibility along cycle life through simple gravimetric method , 2012 .

[325]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[326]  Y. Jung,et al.  Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage , 2012, Advanced materials.

[327]  Jai Prakash,et al.  Characterization of a commercial size cylindrical Li-ion cell with a reference electrode , 2000 .

[328]  M. Obrovac,et al.  Alloy Negative Electrodes for High Energy Density Metal-Ion Cells , 2011 .

[329]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[330]  J. Dahn,et al.  Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries , 2003 .

[331]  Chang Liu,et al.  The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage , 2008, Nanotechnology.

[332]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[333]  H. Lee,et al.  Si (-Zr)/Ag multilayer thin-film anodes for microbatteries , 2003 .

[334]  R. Huggins,et al.  Investigations of a number of alternative negative electrode materials for use in lithium cells , 2001 .

[335]  J. C. Burns,et al.  Predicting and Extending the Lifetime of Li-Ion Batteries , 2013 .

[336]  W. Mader,et al.  TEM investigation on the structure of amorphous silicon monoxide , 2003 .

[337]  Seung M. Oh,et al.  Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries , 2005 .

[338]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[339]  Jeff Dahn,et al.  On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium , 1999 .

[340]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[341]  D. Aurbach,et al.  On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions , 1999 .

[342]  P. Kumta,et al.  Nanostructured Si / TiB2 Composite Anodes for Li-Ion Batteries , 2003 .

[343]  D. A. Small,et al.  A Mossbauer effect investigation of the Li-Sn system , 1999 .

[344]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[345]  P. Moreau,et al.  Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell , 2013 .

[346]  D. Aurbach,et al.  Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component , 2012 .

[347]  Vivek B. Shenoy,et al.  Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries , 2012 .

[348]  K. Utsugi,et al.  Improvement in Cycle Performance and Clarification of Deterioration Mechanism of Lithium-Ion Full Cells Using SiO Anodes , 2013 .

[349]  J. Tarascon,et al.  In situ 119Sn Mössbauer spectroscopy used to study lithium insertion in c-Mg2Sn , 2006 .

[350]  K. Stevenson,et al.  Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions , 2012 .

[351]  Effect of Volume Expansion on SEI Covering Carbon-Coated Nano-Si/SiO Composite , 2013 .

[352]  J. Gröbner,et al.  The Al–Li–Si System: 2. Experimental Study and Thermodynamic Calculation of the Polythermal Equilibria , 2001 .

[353]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[354]  Xifei Li,et al.  Three‐Dimensional Porous Core‐Shell Sn@Carbon Composite Anodes for High‐Performance Lithium‐Ion Battery Applications , 2012 .

[355]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[356]  R. Nesper Structure and chemical bonding in zintl-phases containing lithium , 1990 .

[357]  Mo-hua Yang,et al.  Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder , 2005 .

[358]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[359]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[360]  J. Dahn,et al.  Combinatorial Study of Sn1 − x Co x ( 0 < x < 0.6 ) and [ Sn0.55Co0.45 ] 1 − y C y ( 0 < y < 0.5 ) Alloy Negative Electrode Materials for Li-Ion Batteries , 2006 .

[361]  Soojin Park,et al.  High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer , 2013 .

[362]  M. Lain,et al.  A prelithiated carbon anode for lithium-ion battery applications , 2006 .

[363]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[364]  R. Huggins,et al.  Amorphous silicon formed in situ as negative electrode reactant in lithium cells , 2004 .

[365]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[366]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[367]  J. Read,et al.  Chemistry and Structure of Sony's Nexelion Li-ion Electrode Materials , 2006 .

[368]  M. Huth,et al.  Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane , 2010, 1008.4722.

[369]  Tomoyuki Yamada,et al.  Si thin platelets as high-capacity negative electrode for Li-ion batteries , 2010 .

[370]  P. Kumta,et al.  Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling , 2004 .

[371]  T. Seong,et al.  Use of Sn-Si nanocomposite electrodes for Li rechargeable batteries. , 2005, Chemical communications.

[372]  Seung M. Oh,et al.  Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries , 2005 .

[373]  Jun Chen,et al.  Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. , 2014, Nano letters.

[374]  Gregory A. Roberts,et al.  Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[375]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[376]  Goojin Jeong,et al.  Stabilizing dimensional changes in Si-based composite electrodes by controlling the electrode porosity: An in situ electrochemical dilatometric study , 2011 .

[377]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[378]  A. R. Thompson Lithium Ordering in Li_{x}TiS_{2} , 1978 .

[379]  P. Kohl,et al.  Investigation of the Lithium Couple on Pt, Al, and Hg Electrodes in Lithium Imide-Ethyl Methyl Sulfone , 2002 .

[380]  D. Stevens,et al.  A New Design for a Combinatorial Electrochemical Cell Plate and the Inherent Irreversible Capacity of Lithiated Silicon , 2011 .

[381]  J. Dahn,et al.  Method to Predict Phase Formation and Specific Capacity for Lithium in Codeposited Silicon-Transition Metal Thin Films , 2007 .

[382]  M. Winter,et al.  Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries , 2012 .

[383]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[384]  M. Miyachi,et al.  Electrochemical Properties and Chemical Structures of Metal-Doped SiO Anodes for Li-Ion Rechargeable Batteries , 2007 .

[385]  Joong-Kee Lee,et al.  Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries , 2013 .

[386]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[387]  Thomas A. Yersak,et al.  Conformal Coatings of Cyclized‐PAN for Mechanically Resilient Si nano‐Composite Anodes , 2013 .

[388]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[389]  Sung-Man Lee,et al.  Thermal Stability of Lithiated Silicon Anodes with Electrolyte , 2011 .

[390]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[391]  Seung‐Wan Song,et al.  Silane-Derived SEI Stabilization on Thin-Film Electrodes of Nanocrystalline Si for Lithium Batteries , 2009 .

[392]  P. Moreau,et al.  Hierarchical and Resilient Conductive Network of Bridged Carbon Nanotubes and Nanofibers for High-Energy Si Negative Electrodes , 2009 .

[393]  R. Huggins Polyphase alloys as rechargeable electrodes in advanced battery systems , 1987 .

[394]  Dunwei Wang,et al.  Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction. , 2012, ACS nano.

[395]  M. Qu,et al.  Electrochemical Performance of Si/Graphite/Carbon Composite Electrode in Mixed Electrolytes Containing LiBOB and LiPF6 , 2009 .

[396]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[397]  J. Dahn,et al.  Study of Sn30 ( Co1 − x Fe x ) 30C40 Alloy Negative Electrode Materials Prepared by Mechanical Attriting , 2008 .

[398]  T. Kojima,et al.  In-situ Measurement of Electrode Thickness Change during Charge and Discharge of a Large Capacity SiO Anode , 2012 .

[399]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[400]  Y. Yoon,et al.  Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries , 2003 .

[401]  H. Sugimura,et al.  Lithiation behavior of single-phase Cu–Sn intermetallics and effects on their negative-electrode properties , 2013 .

[402]  J. Dahn,et al.  Studies of tin–transition metal–carbon and tin–cobalt–transition metal–carbon negative electrode materials prepared by mechanical attrition , 2009 .

[403]  J. Tarascon,et al.  Electrochemical reactivity of Mg2Sn phases with metallic lithium , 2004 .

[404]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[405]  Matthieu Dubarry,et al.  Development of a universal modeling tool for rechargeable lithium batteries , 2007 .

[406]  P. Kumta,et al.  Sn/C composite anodes for Li-ion batteries , 2004 .

[407]  P. Komenda,et al.  Binary and ternary Li-alloys as anode materials in rechargeable organic electrolyte Li-batteries , 1986 .

[408]  Seung M. Oh,et al.  Liquid Gallium Electrode Confined in Porous Carbon Matrix as Anode for Lithium Secondary Batteries , 2008 .

[409]  Li Liu,et al.  Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes , 2014 .

[410]  Jai-Young Lee,et al.  Effects of mechanical milling and arc-melting processes on the electrochemical performance of Si-based composite materials , 2006 .

[411]  B. Hannoyer,et al.  Non‐destructive surface analysis applied to atmospheric corrosion of tin , 2002 .

[412]  Yongzhong Jia,et al.  Phase stabilities, electronic and electrochemical properties of compounds in the LiAlSi system , 2005 .

[413]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[414]  A. Manthiram,et al.  Symmetric cell evaluation of the effects of electrolyte additives on Cu2Sb–Al2O3–C nanocomposite anodes , 2012 .

[415]  Hannah M. Dahn,et al.  User-Friendly Differential Voltage Analysis Freeware for the Analysis of Degradation Mechanisms in Li-Ion Batteries , 2012 .

[416]  S. Yoshida,et al.  New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries , 2003 .

[417]  D. H. Bradhurst,et al.  Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries , 2000 .

[418]  Xiangyun Song,et al.  A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes , 2012 .

[419]  Yi Cui,et al.  Crab shells as sustainable templates from nature for nanostructured battery electrodes. , 2013, Nano letters.

[420]  Cheol‐Min Park,et al.  Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries , 2006 .

[421]  Jung-Ki Park,et al.  Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries , 2011 .

[422]  R. Huggins,et al.  Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte , 1986 .

[423]  A. Mansour,et al.  In Situ X‐Ray Absorption and Diffraction Study of the Li Reaction with a Tin Composite Oxide Glass , 2000 .

[424]  D. Larcher Si-Containing Disordered Carbons Prepared by Pyrolysis of Pitch/Polysilane Blends : Effect of Oxygen and Sulfur , 1999 .

[425]  Feng Li,et al.  Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries , 2006 .

[426]  Gaurav Jain,et al.  Material and Design Options for Avoiding Lithium Plating during Charging , 2010 .

[427]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[428]  Saeid Nahavandi,et al.  Dynamic Nanofin Heat Sinks , 2014 .

[429]  Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon , 2012, 1201.1428.

[430]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[431]  Barbara Laïk,et al.  Silicon nanowires as negative electrode for lithium-ion microbatteries , 2008 .

[432]  S. Dallek,et al.  Discharge Characteristics of Lithium‐Boron Alloy Anode in Molten Salt Thermal Cells , 1982 .

[433]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[434]  J. Dahn,et al.  ( Sn0.5Co0.5 ) 1 − y C y Alloy Negative Electrode Materials Prepared by Mechanical Attriting , 2009 .

[435]  Xiao Hua,et al.  Origin of additional capacities in metal oxide lithium-ion battery electrodes. , 2013, Nature materials.

[436]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[437]  J. C. Burns,et al.  Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells , 2014 .

[438]  J. Dahn,et al.  Effect of Annealing on Sn30Co30C40 Prepared by Mechanical Attriting , 2008 .

[439]  H. Lee,et al.  Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries , 2002 .

[440]  Michael Holzapfel,et al.  Nano silicon for lithium-ion batteries , 2006 .

[441]  J. Mondori,et al.  Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries , 1995 .

[442]  T. Sakai,et al.  Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries , 2006 .

[443]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[444]  V. Battaglia,et al.  Conductive Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery , 2013 .

[445]  J. Tu,et al.  Preparation and electrochemical performances of nanoscale FeSn2 as anode material for lithium ion batteries , 2008 .

[446]  G. Wegner,et al.  Improvement of cyclability of Si as anode for Li-ion batteries , 2009 .

[447]  Ji‐Guang Zhang,et al.  Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes , 2012 .

[448]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[449]  Toh-Ming Lu,et al.  Nanostructured electrodes for high-power lithium ion batteries , 2012 .

[450]  R. Hu,et al.  Investigation of immiscible alloy system of Al–Sn thin films as anodes for lithium ion batteries , 2008 .

[451]  H. Okamoto Al-Li (Aluminum-Lithium) , 2012 .

[452]  Yongzhong Jia,et al.  Compositional and structural variations in the ternary system Li – Al – Si , 2003 .

[453]  Doron Aurbach,et al.  Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance , 2013 .

[454]  Seokgwang Doo,et al.  Electrochemical Behaviors of Silicon Electrode in Lithium Salt Solution Containing Alkoxy Silane Additives , 2008 .

[455]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[456]  H. Lee,et al.  Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries , 2004 .

[457]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[458]  I. Uchida,et al.  Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte , 2002 .

[459]  J. Dahn,et al.  Comparison of the Reactions Between Li x Si or Li0.81C6 and Nonaqueous Solvent or Electrolytes at Elevated Temperature , 2006 .

[460]  Sylvie Grugeon,et al.  Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries , 2010 .

[461]  Jing-ying Xie,et al.  Enhancing Electrochemical Performance of Silicon Film Anode by Vinylene Carbonate Electrolyte Additive , 2006 .

[462]  S. Trussler,et al.  A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers , 2011 .

[463]  J. Tarascon,et al.  2LiH + M (M = Mg, Ti): New concept of negative electrode for rechargeable lithium-ion batteries , 2009 .

[464]  Minh Hien Thi Nguyen,et al.  High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries , 2013 .

[465]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[466]  T. Ohsaka,et al.  Formation of Pt–Li alloy and its activity towards formic acid oxidation , 2013 .

[467]  S. Rajendran,et al.  Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries , 2005 .

[468]  J. Dahn,et al.  Mossbauer effect studies of sputter-deposited tin-cobalt and tin-cobalt-carbon alloys , 2007 .

[469]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[470]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[471]  Dominique Guyomard,et al.  On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries , 2007 .

[472]  B. Wei,et al.  Low hydrogen containing amorphous carbon films—Growth and electrochemical properties as lithium battery anodes , 2010 .

[473]  J. Yang,et al.  Tin-containing anode materials in combination with Li{sub 2.6}Co{sub 0.4}N for irreversibility compensation , 2000 .

[474]  Soojin Park,et al.  Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process , 2013 .

[475]  Yabo Wang,et al.  Formation of Sn@C Yolk–Shell Nanospheres and Core–Sheath Nanowires for Highly Reversible Lithium Storage , 2013 .

[476]  Cheol‐Min Park,et al.  Electrochemical Behaviors and Reaction Mechanism of Nanosilver with Lithium , 2009 .

[477]  Jai-Young Lee,et al.  Lithium Insertion in SiAg Powders Produced by Mechanical Alloying , 2001 .

[478]  J. Tarascon,et al.  Mössbauer spectra as a “fingerprint” in tin–lithium compounds: Applications to Li-ion batteries , 2007 .

[479]  Cheol‐Min Park,et al.  Modified SiO as a High Performance Anode for Li-Ion Batteries , 2012 .

[480]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[481]  Venkat Srinivasan,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010 .

[482]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[483]  T. Ohzuku,et al.  Performance of the “SiO”–carbon composite-negative electrodes for high-capacity lithium-ion batteries; prototype 14500 batteries , 2013 .

[484]  Jeff Wolfenstine,et al.  Performance of Sony's Alloy Based Li-Ion Battery , 2008 .

[485]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[486]  Hailei Zhao,et al.  Studies of the electrochemical performance of Sn–Sb alloy prepared by solid-state reduction , 2007 .

[487]  R. Huggins Solid State Ionics , 1989 .

[488]  L. Archer,et al.  Aerosol assisted synthesis of hierarchical tin–carbon composites and their application as lithium battery anode materials , 2013 .

[489]  W. Ho,et al.  Electrochemical performance of In2O3 thin film electrode in lithium cell , 2008 .

[490]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[491]  T. Sakai,et al.  Electroplated Sn-Zn Alloy Electrode for Li Secondary Batteries , 2003 .

[492]  J. Besenhard,et al.  Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries , 2002 .

[493]  P. Komenda,et al.  Dimensionally stable Li-alloy electrodes for secondary batteries , 1990 .

[494]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[495]  K. Sieradzki,et al.  Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. , 2013, Nature materials.

[496]  J. Dahn,et al.  First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .

[497]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .