What Makes a Cell Face Selective? The Importance of Contrast

[1]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[2]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[3]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[4]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[5]  C. Koch,et al.  Faces and text attract gaze independent of the task: Experimental data and computer model. , 2009, Journal of vision.

[6]  A. Torralba,et al.  Detecting faces in impoverished images , 2010 .

[7]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  P. Sinha,et al.  Role of ordinal contrast relationships in face encoding , 2009, Proceedings of the National Academy of Sciences.

[10]  Doris Y. Tsao,et al.  MR-guided stereotactic navigation , 2012, Journal of Neuroscience Methods.

[11]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[12]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[13]  G. Baylis,et al.  Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal , 2001, Nature Neuroscience.

[14]  Norio Izumi,et al.  Broadening the visualization frontier , 2007, J. Vis..

[15]  Pawan Sinha,et al.  Qualitative Representations for Recognition , 2002, Biologically Motivated Computer Vision.

[16]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[17]  C. Connor,et al.  Neural representations for object perception: structure, category, and adaptive coding. , 2011, Annual review of neuroscience.

[18]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[19]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[20]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  Massimiliano Pontil,et al.  Face Detection in Still Gray Images , 2000 .

[22]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[23]  M. Ito,et al.  Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey. , 1994, Cerebral cortex.

[24]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[25]  B Julesz,et al.  Masking in Visual Recognition: Effects of Two-Dimensional Filtered Noise , 1973, Science.

[26]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[27]  H. Komatsu,et al.  Reciprocal connectivity of identified color-processing modules in the monkey inferior temporal cortex. , 2011, Cerebral cortex.

[28]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[29]  H. Wilson,et al.  Configural masking of faces: Evidence for high-level interactions in face perception , 2005, Vision Research.

[30]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[31]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[32]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[33]  K. Hoffmann,et al.  Visual response properties of neurons in cortical areas MT and MST projecting to the dorsolateral pontine nucleus or the nucleus of the optic tract in macaque monkeys , 2009, The European journal of neuroscience.

[34]  R. Dolan,et al.  Contrast polarity and face recognition in the human fusiform gyrus , 1999, Nature Neuroscience.

[35]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[36]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[37]  Pawan Sinha,et al.  Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About , 2006, Proceedings of the IEEE.

[38]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[39]  E. Rolls,et al.  Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey , 2004, Experimental Brain Research.

[40]  M. Bach,et al.  Less is more: subjective detailedness depends on stimulus size. , 2010, Journal of vision.

[41]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[42]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.