Cortical depth profiles of luminance contrast responses in human V1 and V2 using 7 T fMRI

Neural activity in early visual cortex is modulated by luminance contrast. Cortical depth (i.e., laminar) contrast responses have been studied in monkey early visual cortex, but not in humans. In addition to the high spatial resolution needed and the ensuing low signal‐to‐noise ratio, laminar studies in humans using fMRI are hampered by the strong venous vascular weighting of the fMRI signal. In this study, we measured luminance contrast responses in human V1 and V2 with high‐resolution fMRI at 7 T. To account for the effect of intracortical ascending veins, we applied a novel spatial deconvolution model to the fMRI depth profiles. Before spatial deconvolution, the contrast response in V1 showed a slight local maximum at mid cortical depth, whereas V2 exhibited a monotonic signal increase toward the cortical surface. After applying the deconvolution, both V1 and V2 showed a pronounced local maximum at mid cortical depth, with an additional peak in deep grey matter, especially in V1. Moreover, we found a difference in contrast sensitivity between V1 and V2, but no evidence for variations in contrast sensitivity as a function of cortical depth. These findings are in agreement with results obtained in nonhuman primates, but further research will be needed to validate the spatial deconvolution approach.

[1]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[2]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[3]  Jennifer L. Cuzzocreo,et al.  Volumetric neuroimage analysis extensions for the MIPAV software package , 2007, Journal of Neuroscience Methods.

[4]  Ione Fine,et al.  The Relationship between Task Performance and Functional Magnetic Resonance Imaging Response , 2005, The Journal of Neuroscience.

[5]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[6]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[7]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[8]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[9]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[10]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[11]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[12]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[13]  Katrin Amunts,et al.  Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. , 2010, Cerebral cortex.

[14]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[15]  Essa Yacoub,et al.  Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI , 2015, Front. Neurosci..

[16]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[17]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[18]  N. Logothetis,et al.  Spatial Specificity of BOLD versus Cerebral Blood Volume fMRI for Mapping Cortical Organization , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[20]  Tao Jin,et al.  Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation , 2008, NeuroImage.

[21]  Jonathan R. Polimeni,et al.  Analysis strategies for high-resolution UHF-fMRI data , 2017, NeuroImage.

[22]  Harald E. Möller,et al.  Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2 , 2017, NeuroImage.

[23]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[24]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[25]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[26]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[27]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[28]  Pieter R. Roelfsema,et al.  Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex , 2017, NeuroImage.

[29]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[30]  N. Logothetis,et al.  High-resolution fMRI of macaque V1. , 2007, Magnetic resonance imaging.

[31]  Shaul Hestrin,et al.  Layer 6 Corticothalamic Neurons Activate a Cortical Output Layer, Layer 5a , 2014, The Journal of Neuroscience.

[32]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[33]  Jerry L Prince,et al.  Cortical surface segmentation and mapping , 2004, NeuroImage.

[34]  J. Hyde,et al.  Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression , 2004, Magnetic resonance in medicine.

[35]  Robert A. Frazor,et al.  Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. , 2002, Journal of neurophysiology.

[36]  Leonie Lampe,et al.  Lamina-dependent calibrated BOLD response in human primary motor cortex , 2016, NeuroImage.

[37]  Anders M. Dale,et al.  A vascular anatomical network model of the spatio-temporal response to brain activation , 2008, NeuroImage.

[38]  J. Lund Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta) , 1973, The Journal of comparative neurology.

[39]  Seong-Gi Kim,et al.  Cortical layer-dependent arterial blood volume changes: Improved spatial specificity relative to BOLD fMRI , 2010, NeuroImage.

[40]  Essa Yacoub,et al.  The impact of ultra-high field MRI on cognitive and computational neuroimaging , 2017, NeuroImage.

[41]  K. Jarrod Millman,et al.  Python for Scientists and Engineers , 2011, Comput. Sci. Eng..

[42]  Johannes Reichold,et al.  The microvascular system of the striate and extrastriate visual cortex of the macaque. , 2008, Cerebral cortex.

[43]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[44]  Jonathan Westley Peirce,et al.  Neuroinformatics Original Research Article Generating Stimuli for Neuroscience Using Psychopy , 2022 .

[45]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[46]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[47]  Utkarsh Ayachit,et al.  The ParaView guide : updated for ParaView version 4.3 , 2015 .

[48]  Essa Yacoub,et al.  Variable flip angle 3D‐GRASE for high resolution fMRI at 7 tesla , 2016, Magnetic resonance in medicine.

[49]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[50]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[51]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[52]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[53]  Wietske van der Zwaag,et al.  Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function , 2017, NeuroImage.

[54]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[55]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[56]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[57]  Kevan A C Martin,et al.  The Synaptic Connections between Cortical Areas V1 and V2 in Macaque Monkey , 2009, The Journal of Neuroscience.

[58]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[59]  David Bissig,et al.  Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats , 2009, NeuroImage.

[60]  Alexander Maier,et al.  Infragranular Sources of Sustained Local Field Potential Responses in Macaque Primary Visual Cortex , 2011, The Journal of Neuroscience.

[61]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[62]  A. Koretsky,et al.  Deciphering laminar-specific neural inputs with line-scanning fMRI , 2013, Nature Methods.

[63]  R. Tootell,et al.  Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex , 2017, The Journal of Neuroscience.

[64]  R Vogels,et al.  Coding of stimulus invariances by inferior temporal neurons. , 1996, Progress in brain research.

[65]  Dimo Ivanov,et al.  Impact of acquisition and analysis strategies on cortical depth-dependent fMRI , 2017, NeuroImage.

[66]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[67]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[69]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[70]  J. Alonso,et al.  Complex Receptive Fields in Primary Visual Cortex , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[71]  B. Fischl,et al.  Identifying common-source driven correlations in resting-state fMRI via laminar-specific analysis in the human visual cortex , 2009 .

[72]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[73]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[74]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[75]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[76]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[77]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[78]  Jinglong Wu,et al.  Contrast Response Functions with Wide-View Stimuli in the Human Visual Cortex , 2014, Perception.

[79]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[80]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[81]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[82]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[83]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  A. Shmuel,et al.  Perfusion‐based high‐resolution functional imaging in the human brain at 7 Tesla , 2002, Magnetic resonance in medicine.

[86]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[87]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[88]  Fuqiang Zhao,et al.  Cortical depth‐dependent gradient‐echo and spin‐echo BOLD fMRI at 9.4T , 2004, Magnetic resonance in medicine.

[89]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[90]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[91]  Gang Chen,et al.  Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging , 2013, NeuroImage.

[92]  Cornelis H. Slump,et al.  Layer-specific diffusion weighted imaging in human primary visual cortex in vitro , 2013, Cortex.

[93]  Harald E. Möller,et al.  Functional cerebral blood volume mapping with simultaneous multi-slice acquisition , 2016, NeuroImage.

[94]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[95]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[96]  Xin Yu,et al.  Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker–barrel cortex , 2012, NeuroImage.

[97]  E. Callaway,et al.  Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex , 1996, Visual Neuroscience.

[98]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[99]  Giedrius T Buracas,et al.  The Effect of Spatial Attention on Contrast Response Functions in Human Visual Cortex , 2007, The Journal of Neuroscience.

[100]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[101]  Natalia Petridou,et al.  Laminar imaging of positive and negative BOLD in human visual cortex at 7T , 2018, NeuroImage.

[102]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[103]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[104]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[105]  Kâmil Uludag,et al.  Linking brain vascular physiology to hemodynamic response in ultra-high field MRI , 2017, NeuroImage.

[106]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[107]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[108]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[109]  S. Sherman,et al.  Thalamic relays and cortical functioning. , 2005, Progress in brain research.

[110]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.