Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows

This study investigates the accuracy of deep learning models for the inference of Reynolds-averaged Navier–Stokes (RANS) solutions. This study focuses on a modernized U-net architecture and evaluat...

[1]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[2]  Pascal Fua,et al.  Geodesic Convolutional Shape Optimization , 2018, ICML.

[3]  Yisong Yue,et al.  Long-term Forecasting using Tensor-Train RNNs , 2017, ArXiv.

[4]  Jian Yu,et al.  Flowfield Reconstruction Method Using Artificial Neural Network , 2019, AIAA Journal.

[5]  Razvan Pascanu,et al.  Visual Interaction Networks: Learning a Physics Simulator from Video , 2017, NIPS.

[6]  N. Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[7]  Claus-Dieter Munz,et al.  Deep Neural Networks for Data-Driven Turbulence Models , 2018, J. Comput. Phys..

[8]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Amir Barati Farimani,et al.  Deep Learning the Physics of Transport Phenomena , 2017, ArXiv.

[10]  Joshua B. Tenenbaum,et al.  A Compositional Object-Based Approach to Learning Physical Dynamics , 2016, ICLR.

[11]  Enrique Zuazua,et al.  Continuous adjoint approach for the Spalart−Allmaras model in aerodynamic optimization , 2012 .

[12]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[13]  Niloy J. Mitra,et al.  Learning A Physical Long-term Predictor , 2017, ArXiv.

[14]  J. Fröhlich,et al.  Hybrid LES/RANS methods for the simulation of turbulent flows , 2008 .

[15]  Nils Thürey,et al.  Generating Liquid Simulations with Deformation-aware Neural Networks , 2017, ICLR.

[16]  Nils Thürey,et al.  Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow , 2018, Comput. Graph. Forum.

[17]  Frank Thiele,et al.  Restatement of the Spalart-Allmaras Eddy-Viscosity Model in Strain-Adaptive Formulation , 2003 .

[18]  George E. Karniadakis,et al.  Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data , 2018, ArXiv.

[19]  P. Durbin Some Recent Developments in Turbulence Closure Modeling , 2018 .

[20]  Cheng Yang,et al.  Data‐driven projection method in fluid simulation , 2016, Comput. Animat. Virtual Worlds.

[21]  Tamy Boubekeur,et al.  Mean value coordinates for quad cages in 3D , 2018, ACM Trans. Graph..

[22]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .

[23]  Xun Huan,et al.  Enhancing Model Predictability for a Scramjet Using Probabilistic Learning on Manifolds , 2019, AIAA Journal.

[24]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Suvrit Sra,et al.  A Critical View of Global Optimality in Deep Learning , 2018, ArXiv.

[26]  Razvan Pascanu,et al.  Interaction Networks for Learning about Objects, Relations and Physics , 2016, NIPS.

[27]  Leonidas J. Guibas,et al.  Representation Learning and Adversarial Generation of 3D Point Clouds , 2017, ArXiv.

[28]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[29]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[30]  Scott M. Murman,et al.  Velocity/Pressure-Gradient Correlations in a FORANS Approach to Turbulence Modeling , 2014 .

[31]  Hester Bijl,et al.  Bayesian estimates of parameter variability in the k-ε turbulence model , 2014, J. Comput. Phys..

[32]  Yao Zhang,et al.  Application of Convolutional Neural Network to Predict Airfoil Lift Coefficient , 2017, ArXiv.

[33]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[34]  Doyle,et al.  Shock Wave Boundary Layer Interactions in High Mach Number Flows A Critical Survey of Current Numerical Prediction Capabilities , 2000 .

[35]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[36]  Katsushi Ikeuchi,et al.  Detecting potential falling objects by inferring human action and natural disturbance , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Emilie Sauret,et al.  Contribution to single-point closure Reynolds-stress modelling of inhomogeneous flow , 2004 .

[38]  Heng Xiao,et al.  Prediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning , 2018, Theoretical and Computational Fluid Dynamics.

[39]  Markus H. Gross,et al.  Deep Fluids: A Generative Network for Parameterized Fluid Simulations , 2018, Comput. Graph. Forum.

[40]  Nobuyuki Umetani,et al.  Learning three-dimensional flow for interactive aerodynamic design , 2018, ACM Trans. Graph..

[41]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[42]  Ken Perlin,et al.  Accelerating Eulerian Fluid Simulation With Convolutional Networks , 2016, ICML.

[43]  Nils Thürey,et al.  Data-driven synthesis of smoke flows with CNN-based feature descriptors , 2017, ACM Trans. Graph..

[44]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[45]  Tsuhan Chen,et al.  3D Reasoning from Blocks to Stability , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[47]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Dimitris Samaras,et al.  EyeOpener: Editing Eyes in the Wild , 2017, ACM Trans. Graph..

[49]  Karthik Duraisamy,et al.  Machine Learning-augmented Predictive Modeling of Turbulent Separated Flows over Airfoils , 2016, ArXiv.

[50]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[51]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Philippe R. Spalart,et al.  Detached-eddy simulation of an airfoil at high angle of attack , 1999 .

[53]  Julia Ling,et al.  Robust Bayesian Calibration of a k−ε Model for Compressible Jet-in-Crossflow Simulations , 2018, AIAA Journal.

[54]  Mengqi Zhang,et al.  Inverse Design of Airfoil Using a Deep Convolutional Neural Network , 2019, AIAA Journal.

[55]  Karlin R. Roth,et al.  High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil , 1999 .

[56]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[57]  Xiangyu Hu,et al.  Liquid Splash Modeling with Neural Networks , 2017, Comput. Graph. Forum.

[58]  Martin J. Blunt,et al.  Reconstruction of three-dimensional porous media using generative adversarial neural networks , 2017, Physical review. E.

[59]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[60]  Pieter Abbeel,et al.  Tracking deformable objects with point clouds , 2013, 2013 IEEE International Conference on Robotics and Automation.

[61]  Brendan D. Tracey,et al.  A Machine Learning Strategy to Assist Turbulence Model Development , 2015 .

[62]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[63]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[64]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.