The Fidelity of Recovery Is Multiplicative

Fawzi and Renner recently established a lower bound on the conditional quantum mutual information (CQMI) of tripartite quantum states ABC in terms of the fidelity of recovery (FoR), i.e., the maximal fidelity of the state ABC with a state reconstructed from its marginal BC by acting only on the C system. The FoR measures quantum correlations by the local recoverability of global states and has many properties similar to the CQMI. Here, we generalize the FoR and show that the resulting measure is multiplicative by utilizing semi-definite programming duality. This allows us to simplify an operational proof by Brandão et al. of the above-mentioned lower bound that is based on quantum state redistribution. In particular, in contrast to the previous approaches, our proof does not rely on de Finetti reductions.

[1]  Mario Berta,et al.  Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.

[2]  Nilanjana Datta,et al.  An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution , 2014, 1409.4352.

[3]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[4]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[5]  A. Lichnerowicz Proof of the Strong Subadditivity of Quantum-Mechanical Entropy , 2018 .

[6]  Andreas Winter,et al.  Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps , 2018 .

[7]  A. Uhlmann The Transition Probability for States of *‐Algebras , 1985 .

[8]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[9]  Omar Fawzi,et al.  Universal recovery map for approximate Markov chains , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[11]  Isaac H. Kim Conditional Independence in Quantum Many-Body Systems , 2013 .

[12]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[13]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[14]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[15]  Mark M. Wilde,et al.  Fidelity of recovery, geometric squashed entanglement, and measurement recoverability , 2014, 1410.1441.

[16]  Aram Wettroth Harrow,et al.  Quantum de Finetti Theorems Under Local Measurements with Applications , 2012, Communications in Mathematical Physics.

[17]  Mark Braverman Interactive information complexity , 2012, STOC '12.

[18]  Dave Touchette,et al.  Quantum Information Complexity and Amortized Communication , 2014, ArXiv.

[19]  Lin Zhang,et al.  Conditional Mutual Information and Commutator , 2012, 1212.5023.

[20]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[21]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[22]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[23]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[24]  Aram Wettroth Harrow,et al.  Product-state approximations to quantum ground states , 2013, STOC '13.

[25]  Masahito Hayashi,et al.  Correlation detection and an operational interpretation of the Rényi mutual information , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[26]  Mario Berta,et al.  Monotonicity of quantum relative entropy and recoverability , 2014, Quantum Inf. Comput..

[27]  P. M. Alberti A note on the transition probability over C*-algebras , 1983 .

[28]  M. Hastings,et al.  Markov entropy decomposition: a variational dual for quantum belief propagation. , 2010, Physical review letters.

[29]  Mark M. Wilde,et al.  Recoverability in quantum information theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Dave Touchette,et al.  Smooth Entropy Bounds on One-Shot Quantum State Redistribution , 2014, IEEE Transactions on Information Theory.

[31]  Marco Tomamichel,et al.  Strengthened monotonicity of relative entropy via pinched Petz recovery map , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[32]  Andreas Winter,et al.  Squashed Entanglement, $$\mathbf {k}$$k-Extendibility, Quantum Markov Chains, and Recovery Maps , 2014, 1410.4184.

[33]  Mario Berta,et al.  On variational expressions for quantum relative entropies , 2015, ArXiv.

[34]  Christoph Hirche,et al.  Operational meaning of quantum measures of recovery , 2015, 1512.05324.

[35]  Marco Piani,et al.  Hierarchy of Efficiently Computable and Faithful Lower Bounds to Quantum Discord. , 2015, Physical review letters.

[36]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[37]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[38]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[39]  Isaac H. Kim On the informational completeness of local observables , 2014, 1405.0137.

[40]  Nathan Killoran,et al.  Entanglement quantification and quantum benchmarking of optical communication devices , 2012 .

[41]  Robert König,et al.  Quantum entropy and its use , 2017 .

[42]  Mark M Wilde,et al.  Multipartite quantum correlations and local recoverability , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Rahul Jain,et al.  Near optimal bounds on quantum communication complexity of single-shot quantum state redistribution , 2014, ArXiv.

[44]  Quantum de Finetti Theorems under Local Measurements with Applications , 2012 .

[45]  Fernando G S L Brandão,et al.  Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.

[46]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[47]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[48]  Brian Swingle,et al.  Reconstructing quantum states from local data. , 2014, Physical review letters.