Predictive models in the brain

Many neuroscientists view prediction as one of the core brain functions. However, there is little consensus as to the exact nature of predictive information and processes, or the neural mechanisms that realise them. This paper reviews a host of neural models believed to underlie the learning and deployment of predictive knowledge in a variety of brain regions: neocortex, hippocampus, thalamus, basal ganglia and cerebellum. These are compared and contrasted in order to codify a few basic aspects of neural circuitry and dynamics that appear to be the heart of prediction.

[1]  Catherine E. Myers,et al.  Gateway to Memory: An Introduction to Neural Network Modeling of the Hippocampus and Learning , 2000 .

[2]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain , 2000 .

[3]  Eytan Ruppin,et al.  Actor-critic models of the basal ganglia: new anatomical and computational perspectives , 2002, Neural Networks.

[4]  O. Hikosaka Models of information processing in the basal Ganglia edited by James C. Houk, Joel L. Davis and David G. Beiser, The MIT Press, 1995. $60.00 (400 pp) ISBN 0 262 08234 9 , 1995, Trends in Neurosciences.

[5]  T. Deacon The Symbolic Species: The Co-evolution of Language and the Brain , 1998 .

[6]  Keith L. Downing,et al.  The predictive basis of situated and embodied artificial intelligence , 2005, GECCO '05.

[7]  S. Grossberg Adaptive Resonance Theory , 2006 .

[8]  L. Squire,et al.  Structure and function of declarative and nondeclarative memory systems. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Stephen Grossberg,et al.  Adaptive Resonance Theory , 2010, Encyclopedia of Machine Learning.

[10]  Ivan Divac,et al.  The basal ganglia and the control of movement Levels of motor planning Cognition and the control of movement , 1981, Trends in Neurosciences.

[11]  M. Paradiso,et al.  Neuroscience: Exploring the brain, 3rd ed. , 2007 .

[12]  A. Clark Mindware: An Introduction to the Philosophy of Cognitive Science (Second Edition) , 2000 .

[13]  Randall C. O'Reilly,et al.  Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm , 1996, Neural Computation.

[14]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[15]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[16]  J. Hawkins,et al.  On Intelligence , 2004 .

[17]  Steven Churchill,et al.  The vortex , 1999, SIGGRAPH '99.

[18]  Guido E. Vallejos Mindware: An introduction to the philosophy of cognitive science , 2010 .

[19]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience , 2009 .

[20]  Michael Recce,et al.  Hippocampus: spatial models , 1998 .

[21]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[22]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[23]  J. van Leeuwen,et al.  Sequence Learning , 2001, Lecture Notes in Computer Science.

[24]  R. Granger,et al.  Derivation and Analysis of Basic Computational Operations of Thalamocortical Circuits , 2004, Journal of Cognitive Neuroscience.

[25]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.

[26]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[27]  M. Hasselmo,et al.  The hippocampus as an associator of discontiguous events , 1998, Trends in Neurosciences.

[28]  P. Dayan,et al.  The Involvement of Recurrent Connections in Area CA3 in Establishing the Properties of Place Fields: a Model , 2000, The Journal of Neuroscience.

[29]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[30]  Joseph E LeDoux Synaptic Self: How Our Brains Become Who We Are , 2002 .

[31]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[32]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[33]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[34]  K. Jellinger Cortex and Mind. Unifying Cognition , 2003 .

[35]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[36]  A G Barto,et al.  Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. , 1997, Journal of neurophysiology.

[37]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[38]  James C. Houk,et al.  A Cerebellar Model of Timing and Prediction in the Control of Reaching , 1999, Neural Computation.

[39]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[40]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[41]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[42]  A. Barto,et al.  Adaptive Critics and the Basal Ganglia , 1994 .

[43]  A. Redish Beyond the Cognitive Map: From Place Cells to Episodic Memory , 1999 .

[44]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[45]  James C. Houk,et al.  Information Processing in Modular Circuits Linking Basal Ganglia and Cerebral Cortex , 1994 .

[46]  M. Paradiso,et al.  Neuroscience: Exploring the Brain , 1996 .

[47]  C. Stevens Memory: From Mind to Molecules , 1999, Nature Medicine.

[48]  Peter Ford Dominey,et al.  Dissociable Processes for Learning the Surface Structure and Abstract Structure of Sensorimotor Sequences , 1998, Journal of Cognitive Neuroscience.

[49]  J. Warren Synaptic Self: How our Brains Become who we Are , 2002 .

[50]  Thomas H. Brown,et al.  Hebbian synaptic plasticity , 1998 .

[51]  Garrett E. Alexander Basal ganglia , 1998 .

[52]  Keith L. Downing,et al.  Neuroscientific implications for situated and embodied artificial intelligence , 2007, Connect. Sci..

[53]  Richard Granger,et al.  Engines of the Brain: The Computational Instruction Set of Human Cognition , 2006, AI Mag..

[54]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[55]  G. Striedter Principles of brain evolution. , 2005 .

[56]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[57]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .