Collision-Free Trajectory Planning for Two Cooperative Redundant Manipulators Using the Minimum-Time Criterion

An approach is proposed to generate collision-free, near time-optimal trajectories for two cooperative redundant manipulators between two sets of end-points. The time-optimal trajectory of one manipulator is found first. Then by considering this manipulator as a moving obstacle, the collision-free trajectory for the other manipulator is found. After obtaining the trajectories of both manipulators, an iterative approach is proposed to scale the time profile of the trajectories to minimize the traveling time. A simulation example is included to illustrate the validity of the proposed approach.

[1]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[2]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[3]  Renfrey B. Potts,et al.  A discrete trajectory planner for robotic arms with six degrees of freedom , 1989, IEEE Trans. Robotics Autom..

[4]  Hiroaki Ozaki,et al.  Synthesis of a minimum-time manipulator trajectories with geometric path constraints using time scaling , 1988, Robotica.

[5]  Elmer G. Gilbert,et al.  Distance functions and their application to robot path planning in the presence of obstacles , 1985, IEEE J. Robotics Autom..

[6]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  James E. Bobrow,et al.  Optimal Robot Path Planning Using the Minimum-Time Criterion , 2022 .

[8]  Steven Dubowsky,et al.  Time optimal trajectory planning for robotic manipulators with obstacle avoidance: A CAD approach , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  John M. Hollerbach,et al.  Planning of Minimum- Time Trajectories for Robot Arms , 1986 .

[10]  E. Freund,et al.  Real-Time Pathfinding in Multirobot Systems Including Obstacle Avoidance , 1988, Int. J. Robotics Res..

[11]  Myung Jin Chung,et al.  Collision-free motion planning for two articulated robot arms using minimum distance functions , 1990, Robotica.

[12]  F. Chernousko,et al.  Time-optimal control for robotic manipulators , 1989 .

[13]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[14]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[15]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Bum Hee Lee,et al.  Collision-Free Motion Planning of Two Robots , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Sue Whitesides,et al.  Computational Geometry and Motion Planning , 1985 .

[18]  Chia-Ju Wu A modeling method for collision detection and motion planning of robots , 1993, Robotica.

[19]  J. Hollerbach Dynamic Scaling of Manipulator Trajectories , 1983, 1983 American Control Conference.

[20]  Renfrey B. Potts,et al.  Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints , 1988, IEEE J. Robotics Autom..

[21]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[22]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[23]  Tamar Flash,et al.  Discrete Trajectory Planning , 1988, Int. J. Robotics Res..

[24]  오세영 An Inverse Kinematic Solution for Kinematically Redundant Robot Manipulators , 1984 .

[25]  Z. Zenn Bien,et al.  Collision-Free Trajectory Planning for Two Robot Arms , 1989, Robotica.

[26]  신유식,et al.  두대의 로보트를 위한 충돌회피 궤적선정 = Collision-free trajectory planning for two robots , 1989 .

[27]  Chia-Ju Wu,et al.  A numerical approach for time-optimal path-planning of kinematically redundant manipulators , 1994, Robotica.

[28]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[29]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[30]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[31]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[32]  Bernard Roth,et al.  The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains , 1971 .