Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials
暂无分享,去创建一个
Gowoon Cheon | Ekin D. Cubuk | Evan R. Antoniuk | Evan J. Reed | Yi Cui | E. D. Cubuk | Yi Cui | E. Reed | Austin D. Sendek | Gowoon Cheon
[1] H. Fjellvåg,et al. A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure , 2018 .
[2] N. Adelstein. Alloying Effects on Superionic Conductivity in Lithium Indium Halides for All-Solid-State Batteries , 2018 .
[3] Shyue Ping Ong,et al. Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors , 2017 .
[4] Shyue Ping Ong,et al. Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations , 2017 .
[5] B. Wood,et al. Role of Dynamically Frustrated Bond Disorder in a Li+ Superionic Solid Electrolyte , 2016 .
[6] S. Ong,et al. Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.
[7] Kristin A. Persson,et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .
[8] Anubhav Jain,et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .
[9] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[10] Anubhav Jain,et al. A high-throughput infrastructure for density functional theory calculations , 2011 .
[11] Min Yu,et al. Accurate and efficient algorithm for Bader charge integration. , 2010, The Journal of chemical physics.
[12] G. Henkelman,et al. A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[13] S. Adams,et al. Crystal structure of a superionic conductor, Li7P3S11 , 2007 .
[14] Edward Sanville,et al. Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..
[15] G. Henkelman,et al. A fast and robust algorithm for Bader decomposition of charge density , 2006 .
[16] R. Dronskowski,et al. LiM2(NCN)Br3 (M = Sr, Eu): Synthesis and Crystal Structures of Solid‐State Carbodiimides with Empty Tetrahedral Metal Entities , 2005 .
[17] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[18] B. Krebs,et al. Novel Thioborates of Cesium: Cs3BS3 and Li2CsBS3 , 2002 .
[19] Andreas Bohnsack,et al. Ternäre Halogenide vom Typ A3MX6. VII [1]. Die Bromide Li3MBr6 (M=SmLu, Y): Synthese, Kristallstruktur, Ionenbeweglichkeit , 1997 .
[20] B. Krebs,et al. NA2B2S5 AND LI2B2S5: TWO NOVEL PERTHIOBORATES WITH PLANAR 1,2,4-TRITHIA-3,5-DIBOROLANE RINGS , 1995 .
[21] H. Jacobs,et al. Li2I(OH) : Eine Verbindung mit eindimensional unendlich kantenverknüpften [Li4/2(OH)]+-Pyramiden , 1994 .
[22] B. Krebs,et al. Li5B7S13 und Li9B19S33: Zwei Lithiumthioborate mit neuen hochpolymeren Anionengerüsten† , 1993 .
[23] H. Wada,et al. Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln=Lanthanides) , 1987 .
[24] R. Huggins,et al. What is special about fast ionic conductors , 1978 .
[25] R. Huggins. Recent results on lithium ion conductors , 1977 .
[26] R. Bonnichsen,et al. The Crystal Structure of the Double Lithium Antimony(V)oxide LiSbO3. , 1954 .
[27] E. C. Franklin. Potassium Ammonosodiate, Potassium Ammonolithiate, and Rubidium Ammonosodiate, and Rubidium Ammonolithiate , 1918 .