Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials

We discover many new crystalline solid materials with fast single crystal Li ion conductivity at room temperature, discovered through density functional theory simulations guided by machine learning-based methods. The discovery of new solid Li superionic conductors is of critical importance to the development of safe all-solid-state Li-ion batteries. With a predictive universal structure–property relationship for fast ion conduction not well understood, the search for new solid Li ion conductors has relied largely on trial-and-error computational and experimental searches over the last several decades. In this work, we perform a guided search of materials space with a machine learning (ML)-based prediction model for material selection and density functional theory molecular dynamics (DFT-MD) simulations for calculating ionic conductivity. These materials are screened from over 12 000 experimentally synthesized and characterized candidates with very diverse structures and compositions. When compared to a r...

[1]  H. Fjellvåg,et al.  A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure , 2018 .

[2]  N. Adelstein Alloying Effects on Superionic Conductivity in Lithium Indium Halides for All-Solid-State Batteries , 2018 .

[3]  Shyue Ping Ong,et al.  Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors , 2017 .

[4]  Shyue Ping Ong,et al.  Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations , 2017 .

[5]  B. Wood,et al.  Role of Dynamically Frustrated Bond Disorder in a Li+ Superionic Solid Electrolyte , 2016 .

[6]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[7]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[8]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[9]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[10]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[11]  Min Yu,et al.  Accurate and efficient algorithm for Bader charge integration. , 2010, The Journal of chemical physics.

[12]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[14]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[15]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[16]  R. Dronskowski,et al.  LiM2(NCN)Br3 (M = Sr, Eu): Synthesis and Crystal Structures of Solid‐State Carbodiimides with Empty Tetrahedral Metal Entities , 2005 .

[17]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[18]  B. Krebs,et al.  Novel Thioborates of Cesium: Cs3BS3 and Li2CsBS3 , 2002 .

[19]  Andreas Bohnsack,et al.  Ternäre Halogenide vom Typ A3MX6. VII [1]. Die Bromide Li3MBr6 (M=SmLu, Y): Synthese, Kristallstruktur, Ionenbeweglichkeit , 1997 .

[20]  B. Krebs,et al.  NA2B2S5 AND LI2B2S5: TWO NOVEL PERTHIOBORATES WITH PLANAR 1,2,4-TRITHIA-3,5-DIBOROLANE RINGS , 1995 .

[21]  H. Jacobs,et al.  Li2I(OH) : Eine Verbindung mit eindimensional unendlich kantenverknüpften [Li4/2(OH)]+-Pyramiden , 1994 .

[22]  B. Krebs,et al.  Li5B7S13 und Li9B19S33: Zwei Lithiumthioborate mit neuen hochpolymeren Anionengerüsten† , 1993 .

[23]  H. Wada,et al.  Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln=Lanthanides) , 1987 .

[24]  R. Huggins,et al.  What is special about fast ionic conductors , 1978 .

[25]  R. Huggins Recent results on lithium ion conductors , 1977 .

[26]  R. Bonnichsen,et al.  The Crystal Structure of the Double Lithium Antimony(V)oxide LiSbO3. , 1954 .

[27]  E. C. Franklin Potassium Ammonosodiate, Potassium Ammonolithiate, and Rubidium Ammonosodiate, and Rubidium Ammonolithiate , 1918 .