Focus+Context Exploration of Hierarchical Embeddings

Hierarchical embeddings, such as HSNE, address critical visual and computational scalability issues of traditional techniques for dimensionality reduction. The improved scalability comes at the cost of the need for increased user interaction for exploration. In this paper, we provide a solution for the interactive visual Focus+Context exploration of such embeddings. We explain how to integrate embedding parts from different levels of detail, corresponding to focus and context groups, in a joint visualization. We devise an according interaction model that relates typical semantic operations on a Focus+Context visualization with the according changes in the level‐of‐detail‐hierarchy of the embedding, including also a mode for comparative Focus+Context exploration and extend HSNE to incorporate the presented interaction model. In order to demonstrate the effectiveness of our approach, we present a use case based on the visual exploration of multi‐dimensional images.

[1]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[2]  S. Seneviratne,et al.  Bivariate colour maps for visualizing climate data , 2011 .

[3]  Chi-Wing Fu,et al.  Structure-aware Fisheye Views for Efficient Large Graph Exploration , 2019, IEEE Transactions on Visualization and Computer Graphics.

[4]  Nancy Argüelles,et al.  Author ' s , 2008 .

[5]  Tamara Munzner,et al.  Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices , 2013, IEEE Transactions on Visualization and Computer Graphics.

[6]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[7]  Elmar Eisemann,et al.  DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[8]  Elmar Eisemann,et al.  Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types , 2017, Nature Communications.

[9]  Elmar Eisemann,et al.  Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.

[10]  J. Macgregor,et al.  Analysis of multiblock and hierarchical PCA and PLS models , 1998 .

[11]  Torbjörn Lundstedt,et al.  Hierarchical principal component analysis (PCA) and projection to latent structure (PLS) technique on spectroscopic data as a data pretreatment for calibration , 2001 .

[12]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[13]  Daniel A. Keim,et al.  A survey and task-based quality assessment of static 2D colormaps , 2015, Electronic Imaging.

[14]  A. Agarwal,et al.  Efficient Hierarchical-PCA Dimension Reduction for Hyperspectral Imagery , 2007, 2007 IEEE International Symposium on Signal Processing and Information Technology.

[15]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[16]  M. Mearin,et al.  Mass Cytometry of the Human Mucosal Immune System Identifies Tissue- and Disease-Associated Immune Subsets. , 2016, Immunity.

[17]  Helwig Hauser,et al.  Generalizing Focus+Context Visualization , 2006 .

[18]  Elmar Eisemann,et al.  Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine , 2018, The Journal of experimental medicine.

[19]  Steven P. Reiss,et al.  Stretching the rubber sheet: a metaphor for viewing large layouts on small screens , 1993, UIST '93.

[20]  O. Ornatsky,et al.  Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. , 2008, Journal of analytical atomic spectrometry.

[21]  Silvia Miksch,et al.  EVA: Visual Analytics to Identify Fraudulent Events , 2018, IEEE Transactions on Visualization and Computer Graphics.

[22]  Boudewijn P F Lelieveldt,et al.  Interactive Visual Exploration of 3D Mass Spectrometry Imaging Data Using Hierarchical Stochastic Neighbor Embedding Reveals Spatiomolecular Structures at Full Data Resolution , 2018, Journal of proteome research.

[23]  Tobias Schreck,et al.  Assisted Descriptor Selection Based on Visual Comparative Data Analysis , 2011, Comput. Graph. Forum.

[24]  Tamara Munzner,et al.  Visualizing dimensionally-reduced data: interviews with analysts and a characterization of task sequences , 2014, BELIV.

[25]  Rosane Minghim,et al.  HiPP: A Novel Hierarchical Point Placement Strategy and its Application to the Exploration of Document Collections , 2008, IEEE Transactions on Visualization and Computer Graphics.

[26]  Daniel Engel,et al.  A Survey of Dimension Reduction Methods for High-dimensional Data Analysis and Visualization , 2011, VLUDS.

[27]  Tamara Munzner,et al.  Steerable, Progressive Multidimensional Scaling , 2004, IEEE Symposium on Information Visualization.

[28]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[29]  Joshua B. Tenenbaum,et al.  Sparse multidimensional scaling using land-mark points , 2004 .

[30]  Wei Xu,et al.  ColorMapND: A Data-Driven Approach and Tool for Mapping Multivariate Data to Color , 2019, IEEE Transactions on Visualization and Computer Graphics.

[31]  Elmar Eisemann,et al.  Cytosplore: Interactive Immune Cell Phenotyping for Large Single‐Cell Datasets , 2016, Comput. Graph. Forum.

[32]  Daniel A. Keim,et al.  Explorative analysis of 2D color maps , 2015, WSCG 2015.

[33]  Haim Levkowitz,et al.  Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.

[34]  Daniel A. Keim,et al.  Visual Analysis of Time‐Series Similarities for Anomaly Detection in Sensor Networks , 2014, Comput. Graph. Forum.

[35]  George Furnas,et al.  The FISHEYE view: A new look at structured files , 1986, CHI 1986.

[36]  Boudewijn P. F. Lelieveldt,et al.  CyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis , 2018, IEEE Transactions on Visualization and Computer Graphics.

[37]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .