A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem

This paper proposes a methodology to find weakly Pareto optimal solutions to a symmetric multi-objective traveling salesman problem using a memetic random-key genetic algorithm that has been augmented by a 2-opt local search. The methodology uses a ''target-vector approach'' in which the evaluation function is a weighted Tchebycheff metric with an ideal point and the local search is randomly guided by either a weighted sum of the objectives or a weighted Tchebycheff metric. The memetic algorithm has several advantages including the fact that the random keys representation ensures that feasible tours are maintained during the application of genetic operators. To illustrate the quality of the methodology, experiments are conducted using Euclidean TSP examples and a comparison is made to one example found in the literature.

[1]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[2]  M. Ehrgott Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .

[3]  J. C. Bean,et al.  Scheduling operations on parallel machine tools , 2000 .

[4]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[5]  P. Yu A Class of Solutions for Group Decision Problems , 1973 .

[6]  Funda Samanlioglu,et al.  A hybrid random-key genetic algorithm for a symmetric travelling salesman problem , 2007 .

[7]  J. C. Bean,et al.  A GENETIC ALGORITHM METHODOLOGY FOR COMPLEX SCHEDULING PROBLEMS , 1999 .

[8]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[9]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[10]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[13]  Ronald G. Askin,et al.  Scheduling flexible flow lines with sequence-dependent setup times , 2004, Eur. J. Oper. Res..

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[16]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[17]  Mitsuo Gen,et al.  Crossover on intensive search and traveling salesman problem , 1994 .

[18]  Mitsuo Gen,et al.  Film-copy deliverer problem using genetic algorithms , 1995 .

[19]  V. Bowman On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[22]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[23]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[24]  Toshio Fukuda,et al.  Virus-evolutionary genetic algorithm for a self-organizing manufacturing system , 1996 .

[25]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[26]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[27]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[28]  Conor Ryan,et al.  On the Performance of Genetic Operators and the Random Key Representation , 2004, EuroGP.

[29]  Lawrence V. Snyder,et al.  A random-key genetic algorithm for the generalized traveling salesman problem , 2006, Eur. J. Oper. Res..

[30]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[31]  Mauricio G. C. Resende,et al.  An evolutionary algorithm for manufacturing cell formation , 2004, Comput. Ind. Eng..