A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem
暂无分享,去创建一个
[1] Peter J. Fleming,et al. Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.
[2] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .
[3] J. C. Bean,et al. Scheduling operations on parallel machine tools , 2000 .
[4] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[5] P. Yu. A Class of Solutions for Group Decision Problems , 1973 .
[6] Funda Samanlioglu,et al. A hybrid random-key genetic algorithm for a symmetric travelling salesman problem , 2007 .
[7] J. C. Bean,et al. A GENETIC ALGORITHM METHODOLOGY FOR COMPLEX SCHEDULING PROBLEMS , 1999 .
[8] Bernd Freisleben,et al. Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..
[9] Joshua D. Knowles,et al. Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .
[10] James C. Bean,et al. Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..
[11] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[12] H. Kunzi,et al. Lectu re Notes in Economics and Mathematical Systems , 1975 .
[13] Ronald G. Askin,et al. Scheduling flexible flow lines with sequence-dependent setup times , 2004, Eur. J. Oper. Res..
[14] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[15] Carlos A. Coello Coello,et al. A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.
[16] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[17] Mitsuo Gen,et al. Crossover on intensive search and traveling salesman problem , 1994 .
[18] Mitsuo Gen,et al. Film-copy deliverer problem using genetic algorithms , 1995 .
[19] V. Bowman. On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .
[20] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[21] Andrzej Jaszkiewicz,et al. Genetic local search for multi-objective combinatorial optimization , 2022 .
[22] Michael Pilegaard Hansen. Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.
[23] C. Fonseca,et al. GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .
[24] Toshio Fukuda,et al. Virus-evolutionary genetic algorithm for a self-organizing manufacturing system , 1996 .
[25] Tomoyuki Hiroyasu,et al. SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.
[26] William E. Hart,et al. Recent Advances in Memetic Algorithms , 2008 .
[27] David B. Fogel,et al. Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .
[28] Conor Ryan,et al. On the Performance of Genetic Operators and the Random Key Representation , 2004, EuroGP.
[29] Lawrence V. Snyder,et al. A random-key genetic algorithm for the generalized traveling salesman problem , 2006, Eur. J. Oper. Res..
[30] A. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .
[31] Mauricio G. C. Resende,et al. An evolutionary algorithm for manufacturing cell formation , 2004, Comput. Ind. Eng..