Front delineation and tracking with multiple underwater vehicles

[1]  James J. Simpson,et al.  The California Current system: The seasonal variability of its physical characteristics , 1987 .

[2]  Liam Brannigan,et al.  Intense submesoscale upwelling in anticyclonic eddies , 2016 .

[3]  J. G. Bellingham,et al.  Phytoplankton bloom patch center localization by the Tethys Autonomous Underwater Vehicle , 2011, OCEANS'11 MTS/IEEE KONA.

[4]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[5]  James C. McWilliams,et al.  Submesoscale currents in the ocean , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[7]  R. McEwen,et al.  Autonomous detection and sampling of water types and fronts in a coastal upwelling system by an autonomous underwater vehicle , 2012 .

[8]  Gaurav S. Sukhatme,et al.  Adaptive informative sampling with autonomous underwater vehicles: Acoustic versus surface communications , 2016, OCEANS 2016 MTS/IEEE Monterey.

[9]  B Kieft,et al.  Thermocline tracking based on peak-gradient detection by an autonomous underwater vehicle , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[10]  Gaurav S. Sukhatme,et al.  Coordinated sampling of dynamic oceanographic features with underwater vehicles and drifters , 2012, Int. J. Robotics Res..

[11]  James G. Bellingham,et al.  A peak-capture algorithm used on an autonomous underwater vehicle in the 2010 Gulf of Mexico oil spill response scientific survey , 2011, J. Field Robotics.

[12]  J. Reid,et al.  Direct measurements of the Davidson Current off central California , 1962 .

[13]  Amit Tandon,et al.  Submesoscale Processes and Dynamics , 2013 .

[14]  Naomi Ehrich Leonard,et al.  Cooperative Filters and Control for Cooperative Exploration , 2010, IEEE Transactions on Automatic Control.

[15]  Franz S. Hover,et al.  Tracking ocean fronts with multiple vehicles and mixed communication losses , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  James G. Bellingham,et al.  Two-dimensional mapping and tracking of a coastal upwelling front by an autonomous underwater vehicle , 2013, 2013 OCEANS - San Diego.

[17]  Amala Mahadevan,et al.  The Impact of Submesoscale Physics on Primary Productivity of Plankton. , 2016, Annual review of marine science.

[18]  Henrik Schmidt,et al.  Autonomous adaptive environmental assessment and feature tracking via autonomous underwater vehicles , 2010, OCEANS'10 IEEE SYDNEY.

[19]  Peter Cornillon,et al.  Fronts in Large Marine Ecosystems , 2009 .

[20]  Gaurav S. Sukhatme,et al.  Autonomous Underwater Vehicle trajectory design coupled with predictive ocean models: A case study , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  Shuyi Chen,et al.  Ocean convergence and the dispersion of flotsam , 2018, Proceedings of the National Academy of Sciences.

[22]  Naomi Ehrich Leonard,et al.  Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay , 2010, J. Field Robotics.

[23]  Henrik Schmidt,et al.  Constructing a Distributed AUV Network for Underwater Plume-Tracking Operations , 2011, Int. J. Distributed Sens. Networks.

[24]  J. G. Bellingham,et al.  Using an Autonomous Underwater Vehicle to Track a Coastal Upwelling Front , 2012, IEEE Journal of Oceanic Engineering.

[25]  Bartolomé Garau,et al.  Thermal Lag Correction on Slocum CTD Glider Data , 2011 .

[26]  J. Ryan,et al.  Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology , 2005 .

[27]  J. R. Taylor,et al.  Ocean fronts trigger high latitude phytoplankton blooms , 2011 .

[28]  Gaurav S. Sukhatme,et al.  Multi-robot coordination through dynamic Voronoi partitioning for informative adaptive sampling in communication-constrained environments , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Deborah S. Kelley,et al.  Sustained Observing from the Ocean Observatories Initiative (OOI) , 2020 .

[30]  Barbara M. Hickey,et al.  The California current system—hypotheses and facts☆ , 1979 .

[31]  Charles C. Eriksen,et al.  Determining Vertical Water Velocities from Seaglider , 2011 .

[32]  James G. Bellingham,et al.  Autonomous Four‐Dimensional Mapping and Tracking of a Coastal Upwelling Front by an Autonomous Underwater Vehicle , 2016, J. Field Robotics.

[33]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[34]  Nuno A. Cruz,et al.  Autonomous tracking of a horizontal boundary , 2014, 2014 Oceans - St. John's.

[35]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[36]  Andrew Hamilton,et al.  Efficient propulsion for the Tethys long-range autonomous underwater vehicle , 2010, 2010 IEEE/OES Autonomous Underwater Vehicles.

[37]  Naomi Ehrich Leonard,et al.  Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay , 2009 .

[38]  Henrik Schmidt,et al.  Autonomous & adaptive oceanographic front tracking on board autonomous underwater vehicles , 2015, OCEANS 2015 - Genova.

[39]  Annalisa Bracco,et al.  Patchy productivity in the open ocean , 2002 .

[40]  Maria Fox,et al.  Policy learning for autonomous feature tracking , 2014, Auton. Robots.

[41]  Shuxue Yan,et al.  Thermocline tracking using a portable autonomous underwater vehicle based on adaptive threshold , 2016, OCEANS 2016 - Shanghai.

[42]  J. McWilliams,et al.  Submesoscale Instability and Generation of Mesoscale Anticyclones near a Separation of the California Undercurrent , 2015 .

[43]  Steve Chien,et al.  Autonomous Sampling of Ocean Submesoscale Fronts with Ocean Gliders and Numerical Model Forecasting , 2018 .

[44]  James G. Bellingham,et al.  Progress toward autonomous ocean sampling networks , 2009 .

[45]  N A Cruz,et al.  Adaptive sampling of thermoclines with Autonomous Underwater Vehicles , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[46]  Henrik Schmidt,et al.  Nested Autonomy for Distributed Ocean Sensing , 2016 .

[47]  A. Bower,et al.  The Gulf Stream—Barrier or Blender? , 1985 .

[48]  Yanwu Zhang,et al.  Tethys-class long range AUVs - extending the endurance of propeller-driven cruising AUVs from days to weeks , 2012, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV).

[49]  Dimitris Menemenlis,et al.  Ocean submesoscales as a key component of the global heat budget , 2018, Nature Communications.

[50]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[51]  Pierre F. J. Lermusiaux,et al.  Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment , 2009 .

[52]  J. Crowell Small AUV for Hydrographic Applications , 2006, OCEANS 2006.