Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System

Zusammenfassung/Summary1.The activity of single nerve cells in the visual system of cats (curarized or encéphale isolé preparations) was investigated. Records were sampled from units in the optic tract, the lateral geniculate body, and the striate cortex. The non-sequential interval distribution and the mean discharge rate of spontaneous activity and of that during stimulation of the retina with continuous light was analysed over long periods. An interval analyser was used.2.The mean discharge rate of spontaneous activity is highest in the optic tract and decreases significantly towards the visual cortex. The mean values are: 35.5 per sec in the optic tract (13 units), 14.0 per sec in the lateral geniculate (24 units) and 5.7 per sec in the visual cortex (145 units).3.The variety of possible interval distributions was reduced to 3 characteristic types. As belonging to type I those distributions were classified which showed exponential form. Only the frequency of short intervals was reduced, so that the distribution had a peak at 8–10 msec. The joint interval histogram showed that the successive single discharges were independent from each other. From this it could be assumed that spike generation in these cells occurs according to a Poisson-type process. The initial dead time can be explained by the excitability cycle of the units or by recurrent or collateral synaptic interactions. — Bi- or trimodal interval distributions were labelled as type II. The different peaks were attributed to different activity determining factors. A third group (type III) is found by those distributions which show transitional characteristics between the other two. Only one peak of short intervals is distinguishable and flanked by a wide and unsystematic distribution of longer intervals.4.In the optic tract mainly type I, in the lateral geniculate mainly type II and in the visual cortex almost always type III distributions were found.5.The interval distribution from each unit in darkness remained essentially the same under continuous illumination, even though the average discharge rate of optic nerve fibers was considerably changed by stimulation. In cortical cells only little changes of discharge rate were induced by continuous illumination of the retina.

[1]  K. Murata,et al.  THE ACTIVITY OF SINGLE CORTICAL NEURONES OF UNRESTRAINED CATS DURING SLEEP AND WAKEFULNESS. , 1963, Archives italiennes de biologie.

[2]  J. Fuster,et al.  INTERVAL ANALYSIS OF CELL DISCHARGE IN SPONTANEOUS AND OPTICALLY MODULATED ACTIVITY IN THE VISUAL SYSTEM. , 1965, Archives italiennes de biologie.

[3]  L. Pinneo,et al.  THE TONIC ACTIVITY OF THE LATERAL GENICULATE NUCLEUS IN DARK AND LIGHT ADAPTATION. , 1963, Archives italiennes de biologie.

[4]  V. Mountcastle,et al.  THE FUNCTIONAL PROPERTIES OF VENTROBASAL THALAMIC NEURONSSTUDIED IN UNANESTHETIZED MONKEYS. , 1963, Journal of neurophysiology.

[5]  R W RODIECK,et al.  Some quantitative methods for the study of spontaneous activity of single neurons. , 1962, Biophysical journal.

[6]  Lux Hd,et al.  Intracellular studies on the influence of inhibiting potentials in the motor cortex. I. The effect of electric stimulation of nonspecific thalamic nuclei , 1962 .

[7]  V. Mountcastle,et al.  THE RELATION OF THALAMIC CELL RESPONSE TO PERIPHERAL STIMULI VARIED OVER AN INTENSIVE CONTINUUM. , 1963, Journal of neurophysiology.

[8]  W. Burke,et al.  The interpretation of the extracellular response of single lateral geniculate cells , 1962, The Journal of physiology.

[9]  K. Motokawa,et al.  Spectral response curves and receptive fields of pre- and postgeniculate fibres of the cat. , 1960, The Tohoku journal of experimental medicine.

[10]  R G Grossman,et al.  Discharge Patterns of Neurons in Cochlear Nucleus , 1961, Science.

[11]  R. W. Ditchburn,et al.  Involuntary eye movements during fixation , 1953, The Journal of physiology.

[12]  V. Mountcastle,et al.  THE VARIABILITY OF CENTRAL NEURAL ACTIVITY IN A SENSORY SYSTEM, AND ITS IMPLICATIONS FOR THE CENTRAL REFLECTION OF SENSORY EVENTS. , 1963, Journal of neurophysiology.

[13]  W. R. Adey,et al.  The Activity of Neurons in the Amygdala of the Cat following Afferent Stimulation , 1963 .

[14]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[15]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[16]  Günter Baumgartner,et al.  Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast , 1961 .

[17]  D. Hubel Single unit activity in lateral geniculate body and optic tract of unrestrained cats , 1960, The Journal of physiology.

[18]  H. Dieter Lux,et al.  Intracellulre Untersuchungen ber den Einflu hemmender Potentiale im motorischen Cortex: I. Die Wirkung elektrischer Reizung unspezifischer Thalamuskerne , 1962 .

[19]  W. D. Keidel,et al.  Grundprinzipien der akustischen und taktilen Informationsverarbeitung , 1961 .

[20]  H. D. Lux,et al.  Intracelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex , 1962, Archiv für Psychiatrie und Nervenkrankheiten.

[21]  O. Creutzfeldt,et al.  [Microphysiology of cortical neurons & their role in sensory and cerebral function]. , 1957, Deutsche medizinische Wochenschrift.

[22]  Richard Jung,et al.  Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: Die lichtaktivierten B-Neurone , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[23]  J. Fuster,et al.  Excitation and Inhibition of Neuronal Firing in Visual Cortex by Reticular Stimulation , 1961, Science.

[24]  H. Barlow,et al.  MAINTAINED ACTIVITY IN THE CAT'S RETINA IN LIGHT AND DARKNESS , 1957, The Journal of general physiology.

[25]  O. Creutzfeldt,et al.  Intracelluläre Ableitungen von Neuronen des visuellen Cortex und des Corpus geniculatum laterale beim Kaninchen , 2004, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[26]  F JENIK,et al.  Electronic neuron models as an aid to neurophysiological research. , 1962, Ergebnisse der Biologie.

[27]  George L. Gerstein,et al.  Mathematical models for the all-or-none activity of some neurons , 1962, IRE Trans. Inf. Theory.

[28]  O.-J. Grüsser,et al.  Die Informationsübertragung im afferenten visuellen system , 1962, Kybernetik.

[29]  O. Grüsser,et al.  Mikroelektrodenuntersuchungen am Geniculatum laterale der Katze: Nervenzell- und Axonentladungen nach elektrischer Opticusreizung , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[30]  E. Bizzi,et al.  FUNCTIONAL CONNECTIONS BETWEEN PONTINE RETICULAR FORMATION AND LATERAL GENICULATE NUCLEUS DURING DEEP SLEEP. , 1963, Archives italiennes de biologie.

[31]  S. Hagiwara,et al.  Analysis of interval fluctuation of the sensory nerve impulse. , 1954, The Japanese journal of physiology.

[32]  N. Suga,et al.  Interaction of auditory neurons in response to two sound stimuli in cat. , 1959, Journal of neurophysiology.