Inverse Design of Materials by Multi-Objective Differential Evolution($IM^2ODE$)

Abstract Inverse design is a promising approach in the realm of material science for finding structures with desired property. We developed a new package with novel algorithm for inverse design named as IM2ODE (inverse design of Materials by Multi-Objective Differential Evolution). The target properties of concern include the optical and electronic-structure properties of semiconductors, hardness of crystals, etc. IM2ODE can easily predict the atomic configurations with desired properties for three dimensional structure, interface and cluster, even complex defect in solid. Tests have been run on multiple systems and it has been proved that IM2ODE is highly efficient and reliable, which can be applied widely.

[1]  Albert Y. Zomaya,et al.  Biological Knowledge Discovery Handbook: Preprocessing, Mining and Postprocessing of Biological Data , 2013 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Gerbrand Ceder,et al.  Identification and design principles of low hole effective mass p-type transparent conducting oxides , 2013, Nature Communications.

[4]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[7]  Cohen,et al.  Calculation of bulk moduli of diamond and zinc-blende solids. , 1985, Physical review. B, Condensed matter.

[8]  Xingao Gong,et al.  Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach , 2014 .

[9]  Yanming Ma,et al.  First-principles structural design of superhard materials. , 2013, The Journal of chemical physics.

[10]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[11]  M. Batzill,et al.  A two-dimensional phase of TiO₂ with a reduced bandgap. , 2011, Nature chemistry.

[12]  Albert Y. Zomaya,et al.  Biological Knowledge Discovery Handbook , 2013 .

[13]  B. Ahn,et al.  Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells , 2011 .

[14]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[15]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[16]  Xiaojun Wu,et al.  Predicting two-dimensional boron-carbon compounds by the global optimization method. , 2011, Journal of the American Chemical Society.

[17]  C Z Wang,et al.  An adaptive genetic algorithm for crystal structure prediction , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[19]  M. Cohen Structural, electronic and optical properties of carbon nitride , 1996 .

[20]  Y. Kawazoe,et al.  First-principles simulation of cyanogen under high pressure: Formation of paracyanogen and an insulating carbon nitride solid , 2011 .

[21]  R. Needs,et al.  When is H2O not water? , 2007, The Journal of chemical physics.

[22]  Li-doped Cr2MnO4: A new p-type transparent conducting oxide by computational materials design , 2013 .

[23]  Liu,et al.  Structural properties and electronic structure of low-compressibility materials: beta -Si3N4 and hypothetical beta -C3N4. , 1990, Physical review. B, Condensed matter.

[24]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[25]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[26]  Zhanghui Chen,et al.  PDECO: Parallel differential evolution for clusters optimization , 2013, J. Comput. Chem..

[27]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[28]  Tughrul Arslan,et al.  Proceedings Of The 2000 Congress On Evolutionary Computation , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[29]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[30]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[31]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Alex Zunger,et al.  Genetic design of enhanced valley splitting towards a spin qubit in silicon , 2013, Nature Communications.

[33]  Charles M. Lieber,et al.  Experimental Realization of the Covalent Solid Carbon Nitride , 1993, Science.

[34]  Tughrul Arslan,et al.  Proceedings Of The 2000 Congress On Evolutionary Computation , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[35]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[36]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[37]  Alex Zunger,et al.  Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. , 2012, Physical review letters.

[38]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[41]  Su-Huai Wei,et al.  Towards direct-gap silicon phases by the inverse band structure design approach. , 2013, Physical review letters.

[42]  Alex Zunger,et al.  The inverse band-structure problem of finding an atomic configuration with given electronic properties , 1999, Nature.

[43]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[44]  Xiang,et al.  Efficiency of generalized simulated annealing , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Liu,et al.  Stability of carbon nitride solids. , 1994, Physical review. B, Condensed matter.

[46]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[47]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[48]  A. Liu,et al.  Prediction of New Low Compressibility Solids , 1989, Science.