Reflectance sharing: image-based rendering from a sparse set of images

When the shape of an object is known, its appearance is determined by the spatially-varying reflectance function defined on its surface. Image-based rendering methods that use geometry seek to estimate this function from image data. Most existing methods recover a unique angular reflectance function (e.g., BRDF) at each surface point and provide reflectance estimates with high spatial resolution. Their angular accuracy is limited by the number of available images, and as a result, most of these methods focus on capturing parametric or low-frequency angular reflectance effects, or allowing only one of lighting or viewpoint variation. We present an alternative approach that enables an increase in the angular accuracy of a spatially-varying reflectance function in exchange for a decrease in spatial resolution. By framing the problem as scattered-data interpolation in a mixed spatial and angular domain, reflectance information is shared across the surface, exploiting the high spatial resolution that images provide to fill the holes between sparsely observed view and lighting directions. Since the BRDF typically varies slowly from point to point over much of an object's surface, this method enables image-based rendering from a sparse set of images without assuming a parametric reflectance model. In fact, the method can even be applied in the limiting case of a single input image.

[1]  Athinodoros S. Georghiades,et al.  Recovering 3-D Shape and Reflectance From a Small Number of Photographs , 2003, Rendering Techniques.

[2]  J. Koenderink,et al.  Optical properties (bidirectional reflection distribution functions) of velvet. , 1998, Applied optics.

[3]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[4]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn , 2001, SIAM J. Sci. Comput..

[5]  Anselmo Lastra,et al.  Efficient rendering of spatial bi-directional reflectance distribution functions , 2002, HWWS '02.

[6]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[7]  André Gagalowicz,et al.  Image-based rendering of diffuse, specular and glossy surfaces from a single image , 2001, SIGGRAPH.

[8]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[9]  Paul A. Beardsley,et al.  Image-based 3D photography using opacity hulls , 2002, ACM Trans. Graph..

[10]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[11]  Shree K. Nayar,et al.  Separation of Reflection Components Using Color and Polarization , 1997, International Journal of Computer Vision.

[12]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[13]  Wei-Chao Chen,et al.  Light field mapping: efficient representation and hardware rendering of surface light fields , 2002, SIGGRAPH.

[14]  MatusikWojciech,et al.  Image-based 3D photography using opacity hulls , 2002 .

[15]  J WardGregory,et al.  Measuring and modeling anisotropic reflection , 1992 .

[16]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[17]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[18]  Wojciech Matusik,et al.  Efficient Isotropic BRDF Measurement , 2003, Rendering Techniques.

[19]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[20]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[21]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[22]  S. Marschner,et al.  Inverse Rendering for Computer Graphics , 1998 .

[23]  MatusikWojciech,et al.  A data-driven reflectance model , 2003 .

[24]  Steven M. Seitz,et al.  Shape and materials by example: a photometric stereo approach , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[25]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[26]  GrzeszczukRadek,et al.  Light field mapping , 2002 .

[27]  J. Z. Zhu,et al.  The finite element method , 1977 .

[28]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[29]  Hans-Peter Seidel,et al.  Image-Based Reconstruction of Spatially Varying Materials , 2001 .

[30]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[31]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.

[32]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[33]  Michael Gervautz,et al.  An Image based Measurement System for Anisotropic Reflection , 1996, Comput. Graph. Forum.

[34]  Pat Hanrahan,et al.  Frequency space environment map rendering , 2002, SIGGRAPH.

[35]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[36]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[37]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[38]  Michael D. McCool,et al.  Fast Extraction of BRDFs and Material Maps from Images , 2003, Graphics Interface.

[39]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[40]  L CookRobert,et al.  A reflectance model for computer graphics , 1981 .

[41]  Katsushi Ikeuchi,et al.  Temporal-color space analysis of reflection , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[42]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[43]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[44]  Robert L Cook,et al.  A reflectance model for computer graphics , 1981, SIGGRAPH '81.

[45]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[46]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[47]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[48]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[49]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[50]  Shree K. Nayar,et al.  Generalization of Lambert's reflectance model , 1994, SIGGRAPH.

[51]  Greg Turk,et al.  Reconstructing surfaces using anisotropic basis functions , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[52]  R. E. Carlson,et al.  Interpolation of track data with radial basis methods , 1992 .

[53]  Anselmo Lastra,et al.  A generalized surface appearance representation for computer graphics , 2002 .

[54]  Shree K. Nayar,et al.  Lighting sensitive display , 2004, ACM Trans. Graph..

[55]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..