Fold-change detection in biological systems

Abstract Many sensory systems in cells and organisms share a recurring property called fold-change detection (FCD). FCD describes a system whose dynamics – including amplitude and response time – are determined only by the relative change in input signal, rather than its absolute change. FCD entails two important features – exact adaptation and the Weber–Fechner law. Systems with FCD include bacterial and eukaryotic chemotaxis, signaling pathways in mammalian cells such as NF-κB, Wnt and Tgf-β, and organismal vision, hearing and olfaction. Here, we review circuits that can provide FCD such as the incoherent type 1 feedforward loop, the non-linear integral feedback loop, and logarithmic sensor. We review experimental ways to test for FCD and differentiate between FCD mechanisms, and highlight theoretical studies that begin to map the space of FCD circuits and the functions they can provide. Finally, we discuss open questions on the structure and function of FCD systems.

[1]  Judith P. Armitage,et al.  Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides , 2013, Journal of The Royal Society Interface.

[2]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[3]  Michael A. Savageau,et al.  Design principles for elementary gene circuits: Elements, methods, and examples. , 2001, Chaos.

[4]  A. Levchenko,et al.  Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. , 2001, Biophysical journal.

[5]  Kunihiko Kaneko,et al.  Adaptation to optimal cell growth through self-organized criticality. , 2012, Physical review letters.

[6]  Giovanna De Palo,et al.  Unraveling Adaptation in Eukaryotic Pathways: Lessons from Protocells , 2013, PLoS Comput. Biol..

[7]  Eduardo D. Sontag,et al.  A Characterization of Scale Invariant Responses in Enzymatic Networks , 2012, PLoS Comput. Biol..

[8]  W. Schultz,et al.  Adaptive Coding of Reward Value by Dopamine Neurons , 2005, Science.

[9]  Eduardo D. Sontag,et al.  Incoherent feedforward motifs as immune change detectors , 2015, bioRxiv.

[10]  A. Treisman The binding problem , 1996, Current Opinion in Neurobiology.

[11]  Roman Stocker,et al.  Response rescaling in bacterial chemotaxis , 2011, Proceedings of the National Academy of Sciences.

[12]  Pablo A Iglesias,et al.  A systems biology view of adaptation in sensory mechanisms. , 2012, Advances in experimental medicine and biology.

[13]  Steven W. Flavell,et al.  A Circuit for Gradient Climbing in C. elegans Chemotaxis. , 2015, Cell reports.

[14]  Dino J. Levy,et al.  Comparing Apples and Oranges: Using Reward-Specific and Reward-General Subjective Value Representation in the Brain , 2011, The Journal of Neuroscience.

[15]  Y. Tu,et al.  The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop , 2013, Journal of The Royal Society Interface.

[16]  Eduardo Sontag,et al.  Fold-change detection and scalar symmetry of sensory input fields , 2010, Proceedings of the National Academy of Sciences.

[17]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[18]  Eduardo D. Sontag,et al.  Scale-invariance in singularly perturbed systems , 2014, 53rd IEEE Conference on Decision and Control.

[19]  J. Arrieta,et al.  Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii , 2016, Scientific Reports.

[20]  K. Kaneko,et al.  Weber's law for biological responses in autocatalytic networks of chemical reactions. , 2011, Physical review letters.

[21]  Eduardo Sontag,et al.  Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis , 2013, Journal of The Royal Society Interface.

[22]  Uri Alon,et al.  Optimal Regulatory Circuit Topologies for Fold-Change Detection. , 2017, Cell systems.

[23]  Eduardo D Sontag,et al.  Fundamental limitation of the instantaneous approximation in fold-change detection models. , 2015, IET systems biology.

[24]  Gordon D. A. Brown,et al.  Scale-invariance as a unifying psychological principle , 1999, Cognition.

[25]  Yuhai Tu,et al.  Modeling the chemotactic response of Escherichia coli to time-varying stimuli , 2008, Proceedings of the National Academy of Sciences.

[26]  Uri Alon,et al.  Dynamics and variability of ERK2 response to EGF in individual living cells. , 2009, Molecular cell.

[27]  Uri Alon,et al.  Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection , 2014, PLoS Comput. Biol..

[28]  P. Iglesias,et al.  Comparison of adaptation motifs: temporal, stochastic and spatial responses. , 2014, IET systems biology.

[29]  N. Gov,et al.  Stable swarming using adaptive long-range interactions. , 2017, Physical review. E.

[30]  Nir S. Gov,et al.  Long-range acoustic interactions in insect swarms: an adaptive gravity model , 2015, 1510.07259.

[31]  Smadar Ben-Tabou de-Leon,et al.  Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics , 2015, PLoS genetics.

[32]  Eduardo D. Sontag,et al.  Oscillatory stimuli differentiate adapting circuit topologies , 2017, Nature Methods.

[33]  Eduardo D. Sontag,et al.  Zeros of nonlinear systems with input invariances , 2017, Autom..

[34]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[35]  B. R. Iyengar Properties of compostite feedback-feedforward pulse generating motifs , 2016, bioRxiv.

[36]  J. Adler,et al.  The Range of Attractant Concentrations for Bacterial Chemotaxis and the Threshold and Size of Response over This Range , 1973, The Journal of general physiology.

[37]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[38]  Noah Olsman,et al.  Allosteric proteins as logarithmic sensors , 2016, Proceedings of the National Academy of Sciences.

[39]  Christopher T. Kello,et al.  Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.

[40]  Eduardo D. Sontag,et al.  Exploring the scale invariance property in enzymatic networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[41]  M. Vergassola,et al.  Noninvasive inference of the molecular chemotactic response using bacterial trajectories , 2012, Proceedings of the National Academy of Sciences.

[42]  L. Goentoro,et al.  Sensing relative signal in the Tgf-β/Smad pathway , 2017, Proceedings of the National Academy of Sciences.

[43]  J. Slotine,et al.  Symmetries, stability, and control in nonlinear systems and networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Eduardo D. Sontag,et al.  Symmetry invariance for adapting biological systems , 2010, SIAM J. Appl. Dyn. Syst..

[45]  Robin E C Lee,et al.  Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. , 2014, Molecular cell.

[46]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[47]  Eduardo D. Sontag,et al.  Scale-invariant systems realize nonlinear differential operators , 2016, 2016 American Control Conference (ACC).

[48]  M. Sheinman,et al.  Efficient fold-change detection based on protein-protein interactions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Claudio Altafini,et al.  Common dynamical features of sensory adaptation in photoreceptors and olfactory sensory neurons , 2013, Scientific Reports.

[50]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[51]  K. Kamino,et al.  Rescaling of Spatio-Temporal Sensing in Eukaryotic Chemotaxis , 2016, PloS one.

[52]  Kunihiko Kaneko,et al.  Fold-change detection and scale invariance of cell–cell signaling in social amoeba , 2017, Proceedings of the National Academy of Sciences.

[53]  Peter K. Sorger,et al.  Receptor-Based Mechanism of Cell Memory and Relative Sensing in Mammalian Signaling Networks , 2017, bioRxiv.

[54]  Tatiana T. Marquez-Lago,et al.  Stochastic adaptation and fold-change detection: from single-cell to population behavior , 2011, BMC Systems Biology.

[55]  Emilio Frazzoli,et al.  The effect of reversals for a stochastic source-seeking process inspired by bacterial chemotaxis , 2014, 2014 American Control Conference.

[56]  Alex Groisman,et al.  Incoherent Feedforward Control Governs Adaptation of Activated Ras in a Eukaryotic Chemotaxis Pathway , 2012, Science Signaling.

[57]  Yuval Hart,et al.  Comparing Apples and Oranges: Fold-Change Detection of Multiple Simultaneous Inputs , 2013, PloS one.

[58]  G. Fain,et al.  Adaptation in vertebrate photoreceptors. , 2001, Physiological reviews.

[59]  Eduardo Sontag,et al.  Logarithmic sensing in Bacillus subtilis aerotaxis , 2017, npj Systems Biology and Applications.

[60]  Nick Chater,et al.  From Universal Laws of Cognition to Specific Cognitive Models Candidate Principles 1: Scale Invariance Candidate Law 2: the Simplicity Principle , 2008 .

[61]  Mustafa Khammash,et al.  A molecular implementation of the least mean squares estimator , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[62]  Wendell A. Lim,et al.  Secreting and Sensing the Same Molecule Allows Cells to Achieve Versatile Social Behaviors , 2014, Science.

[63]  U. Alon,et al.  The incoherent feedforward loop can provide fold-change detection in gene regulation. , 2009, Molecular cell.

[64]  Eduardo D. Sontag,et al.  Input symmetry invariance, and applications to biological systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[65]  A. Kicheva,et al.  Dynamics of Dpp Signaling and Proliferation Control , 2011, Science.

[66]  Yoshihiro Morishita,et al.  Cellular sensory mechanisms for detecting specific fold-changes in extracellular cues. , 2014, Biophysical journal.

[67]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Eduardo Sontag A Dynamic Model of Immune Responses to Antigen Presentation Predicts Different Regions of Tumor or Pathogen Elimination. , 2017, Cell systems.

[69]  Yoshihiro Morishita,et al.  Encoding and decoding of positional information in morphogen-dependent patterning. , 2012, Current opinion in genetics & development.

[70]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[71]  Robert G. Endres,et al.  Predicting Chemical Environments of Bacteria from Receptor Signaling , 2014, PLoS Comput. Biol..

[72]  Richard M. Murray,et al.  Synthetic circuit for exact adaptation and fold-change detection , 2014, Nucleic acids research.

[73]  Gordon D. A. Brown,et al.  A temporal ratio model of memory. , 2007, Psychological review.

[74]  Lea Goentoro,et al.  Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. , 2009, Molecular cell.

[75]  Matthew P. Edgington,et al.  Fold-Change Detection in a Whole-Pathway Model of Escherichia coli chemotaxis , 2014, Bulletin of Mathematical Biology.

[76]  Eduardo Sontag Two-zone tumor tolerance can arise from a simple immunological feedforward motif that estimates tumor growth rates , 2016, bioRxiv.