DISO: A Domain Ontology for Modeling Dislocations in Crystalline Materials

Crystalline materials, such as metals and semiconductors, nearly always contain a special defect type called dislocation. This defect decisively determines many important material properties, e.g., strength, fracture toughness, or ductility. Over the past years, significant effort has been put into understanding dislocation behavior across different length scales via experimental characterization techniques and simulations. This paper introduces the dislocation ontology (DISO), which defines the concepts and relationships related to linear defects in crystalline materials. We developed DISO using a top-down approach in which we start defining the most general concepts in the dislocation domain and subsequent specialization of them. DISO is published through a persistent URL following W3C best practices for publishing Linked Data. Two potential use cases for DISO are presented to illustrate its usefulness in the dislocation dynamics domain. The evaluation of the ontology is performed in two directions, evaluating the success of the ontology in modeling a real-world domain and the richness of the ontology.

[1]  Paul T. Groth,et al.  Packaging research artefacts with RO-Crate , 2021, Data Sci..

[2]  Mehwish Alam,et al.  Steps towards a Dislocation Ontology for Crystalline Materials , 2021, 2106.15136.

[3]  S. Zechel,et al.  Digital Transformation in Materials Science: A Paradigm Change in Material's Development , 2021, Advanced materials.

[4]  Sahar Vahdati,et al.  Ontology Design for Pharmaceutical Research Outcomes , 2020, TPDL.

[5]  R. Armiento,et al.  An Ontology for the Materials Design Domain , 2020, SEMWEB.

[6]  Christoph Lange,et al.  Towards the semantic formalization of science , 2020, SAC.

[7]  George A. Vouros,et al.  Ontology engineering methodologies for the evolution of living and reused ontologies: status, trends, findings and recommendations , 2020, The Knowledge Engineering Review.

[8]  Sören Auer,et al.  SEO: A Scientific Events Data Model , 2019, SEMWEB.

[9]  Asunción Gómez-Pérez,et al.  Why are ontologies not reused across the same domain? , 2019, J. Web Semant..

[10]  S. Sandfeld,et al.  Machine Learning-Based Classification of Dislocation Microstructures , 2019, Front. Mater..

[11]  Christoph Lange,et al.  EVENTSKG: A 5-Star Dataset of Top-Ranked Events in Eight Computer Science Communities , 2019, ESWC.

[12]  M. Alava,et al.  Machine learning plastic deformation of crystals , 2018, Nature Communications.

[13]  A. Prakash,et al.  Chances and Challenges in Fusing Data Science with Materials Science , 2018, Practical Metallography.

[14]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[15]  Sydney Hall,et al.  The Implementation and Evolution of STAR/CIF Ontologies: Interoperability and Preservation of Structured Data , 2016, Data Sci. J..

[16]  G. Po,et al.  Microstructural comparison of the kinematics of discrete and continuum dislocations models , 2015, 1506.09167.

[17]  Giacomo Po,et al.  A variational formulation of constrained dislocation dynamics coupled with heat and vacancy diffusion , 2014 .

[18]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[19]  Nick Spadaccini,et al.  dREL: A Relational Expression Language for Dictionary Methods , 2012, J. Chem. Inf. Model..

[20]  Elena Paslaru Bontas Simperl,et al.  Ontology metadata for ontology reuse , 2011, Int. J. Metadata Semant. Ontologies.

[21]  Toshihiro Ashino,et al.  Materials Ontology: An Infrastructure for Exchanging Materials Information and Knowledge , 2010, Data Sci. J..

[22]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[23]  Nasr M. Ghoniem,et al.  Fast-sum method for the elastic field of three-dimensional dislocation ensembles , 1999 .

[24]  P. E. van der Vet,et al.  The Plinius ontology of ceramic materials , 1994 .

[25]  M. Polanyi,et al.  Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte , 1934 .

[26]  E. Orowan Zur Kristallplastizität. I , 1934 .

[27]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[28]  Said Fathalla,et al.  Semantic Representation of Physics Research Data , 2020, KEOD.

[29]  Christoph Lange,et al.  SemSur: A Core Ontology for the Semantic Representation of Research Findings , 2018, SEMANTiCS.

[30]  G. Monnet,et al.  Modeling crystal plasticity with dislocation dynamics simulations: The ’microMegas’ code , 2011 .

[31]  Amit P. Sheth,et al.  OntoQA: Metric-Based Ontology Quality Analysis , 2005 .