Structure and function of the middle temporal visual area (MT) in the marmoset: Comparisons with the macaque monkey

Although macaque monkeys have been dominant models in visual neuroscience, recent scientific advances suggest that marmosets provide a valuable alternative in the context of many types of experiments. Here we focus on the middle temporal area (MT), the most extensively studied extrastriate area in primates, and discuss similarities and differences between marmosets and macaques. The basic response properties of MT cells are similar in these species, including direction selectivity, speed tuning, and receptive field centre-surround organization. However, there are differences associated with spatial processing: receptive fields are larger in the marmoset than in the macaque, and MT neurons have preferences for lower spatial frequencies. Comparative analysis of anatomical connections show neural projections from several higher-order association areas to marmoset MT, which seem to be absent or reduced in the macaque. This suggests that cognitive processes could influence the activity of marmoset MT cells more directly. Despite a relative reduction in visual acuity, the present knowledge about the anatomy and physiology of MT in the marmoset suggests that simple low-level visual tasks, which are standard in the literature, are well within the capabilities of marmosets, opening the way for comparative studies of perception and cognition in primate brains of different sizes.

[1]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[2]  Christopher C. Pack,et al.  Contrast sensitivity of MT receptive field centers and surrounds. , 2011, Journal of neurophysiology.

[3]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[4]  Marcello G P Rosa,et al.  Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. , 2006, Cerebral cortex.

[5]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[6]  R. Born,et al.  Timescales of Sensory- and Decision-Related Activity in the Middle Temporal and Medial Superior Temporal Areas , 2010, The Journal of Neuroscience.

[7]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[8]  Leo L. Lui,et al.  Breaking camouflage: responses of neurons in the middle temporal area to stimuli defined by coherent motion , 2012, The European journal of neuroscience.

[9]  Tristan A. Chaplin,et al.  Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: a retrograde tracing study in marmoset monkeys. , 2013, Cerebral cortex.

[10]  M. Rosa Topographic organisation of extrastriate areas in the flying fox: Implications for the evolution of mammalian visual cortex , 1999, The Journal of comparative neurology.

[11]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[12]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[13]  W. Merigan,et al.  Motion perception following lesions of the superior temporal sulcus in the monkey. , 1994, Cerebral cortex.

[14]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[15]  M. Shadlen,et al.  Microstimulation of visual cortex affects the speed of perceptual decisions , 2003, Nature Neuroscience.

[16]  Bruce G Cumming,et al.  Decision-related activity in sensory neurons: correlations among neurons and with behavior. , 2012, Annual review of neuroscience.

[17]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[18]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[19]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[20]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[21]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[22]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[23]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[24]  K. Kawano,et al.  Difference in Visual Motion Representation between Cortical Areas MT and MST during Ocular Following Responses , 2014, The Journal of Neuroscience.

[25]  J. D. Mollon,et al.  The relationship between cone pigments and behavioural sensitivity in a new world monkey (Callithrix jacchus jacchus) , 1992, Vision Research.

[26]  C. Galletti,et al.  Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex , 2009, The Journal of Neuroscience.

[27]  Chris Tailby,et al.  Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset , 2011, The Journal of physiology.

[28]  G. Rees,et al.  What does Neural Plasticity Tell us about Role of Primary Visual Cortex (V1) in Visual Awareness? , 2010, Front. Psychology.

[29]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[30]  D. J. Warren,et al.  High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array , 2001, Neuroscience.

[31]  P. Saraiva,et al.  Relative sizes of cortical visual areas in marmosets: functional and phylogenetic implications , 2005, Experimental Brain Research.

[32]  M. Rosa Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[33]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Harry F. Baker,et al.  Visual discrimination learning impairments produced by combined transections of the anterior temporal stem, amygdala and fornix in marmoset monkeys , 2001, Brain Research.

[35]  D. Pandya,et al.  The cortical connectivity of the prefrontal cortex in the monkey brain , 2012, Cortex.

[36]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[37]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[39]  W. Newsome,et al.  Context-Dependent Changes in Functional Circuitry in Visual Area MT , 2008, Neuron.

[40]  L. Romanski,et al.  Neurons responsive to face-view in the primate ventrolateral prefrontal cortex , 2011, Neuroscience.

[41]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[42]  R. Werth,et al.  Visual functions without the occipital lobe or after cerebral hemispherectomy in infancy , 2006, The European journal of neuroscience.

[43]  Leo L. Lui,et al.  Relationship between Size Summation Properties, Contrast Sensitivity and Response Latency in the Dorsomedial and Middle Temporal Areas of the Primate Extrastriate Cortex , 2013, PloS one.

[44]  T S Davis,et al.  Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation , 2011, Journal of neural engineering.

[45]  Tadashi Isa,et al.  Contribution of the retino‐tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys , 2011, The European journal of neuroscience.

[46]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[47]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[48]  Tristan A. Chaplin,et al.  A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates , 2013, The Journal of Neuroscience.

[49]  C G Gross,et al.  Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Cowey,et al.  Blindsight in monkeys , 1995, Nature.

[51]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[52]  Leo L. Lui,et al.  Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity , 2010, The European journal of neuroscience.

[53]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[54]  Michela Gamberini,et al.  Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas , 2006, The Journal of comparative neurology.

[55]  T. Robbins,et al.  Cognitive Inflexibility After Prefrontal Serotonin Depletion , 2004, Science.

[56]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[57]  Arnulf B. A. Graf,et al.  Decoding the activity of neuronal populations in macaque primary visual cortex , 2011, Nature Neuroscience.

[58]  Samuel G. Solomon,et al.  A simpler primate brain: the visual system of the marmoset monkey , 2014, Front. Neural Circuits..

[59]  Amanda Parker,et al.  The uses of colour vision: behavioural and physiological distinctiveness of colour stimuli. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[60]  A. Iriki,et al.  The common marmoset as a novel animal model system for biomedical and neuroscience research applications. , 2012, Seminars in fetal & neonatal medicine.

[61]  R. Wurtz Visual receptive fields of striate cortex neurons in awake monkeys. , 1969, Journal of neurophysiology.

[62]  J. D. Mollon,et al.  Polymorphism of visual pigments in a callitrichid monkey , 1988, Vision Research.

[63]  G. Striedter Principles of brain evolution. , 2005 .

[64]  K. H. Britten,et al.  A relationship between behavioral choice and the visual responses of neurons in macaque MT , 1996, Visual Neuroscience.

[65]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[66]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[67]  T. Insel,et al.  Differential expansion of neural projection systems in primate brain evolution. , 1999, Neuroreport.

[68]  J. Kaas,et al.  Responses of Neurons in the Middle Temporal Visual Area After Long-Standing Lesions of the Primary Visual Cortex in Adult New World Monkeys , 2003, The Journal of Neuroscience.

[69]  G. DeAngelis,et al.  A Logarithmic, Scale-Invariant Representation of Speed in Macaque Middle Temporal Area Accounts for Speed Discrimination Performance , 2005, The Journal of Neuroscience.

[70]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[71]  W. Newsome,et al.  Estimates of the Contribution of Single Neurons to Perception Depend on Timescale and Noise Correlation , 2009, The Journal of Neuroscience.

[72]  Selina S. Solomon,et al.  Texture-dependent motion signals in primate middle temporal area , 2013, The Journal of physiology.

[73]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[74]  W. B. Spatz Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus , 1977, Experimental Brain Research.

[75]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[76]  K. Nishijima,et al.  Life span of common marmoset (Callithrix jacchus) at CLEA Japan breeding colony , 2012, Biogerontology.

[77]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[78]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  S. Shimojo,et al.  Parcellation and Area-Area Connectivity as a Function of Neocortex Size , 2005, Brain, Behavior and Evolution.

[80]  J L Ringo,et al.  Neuronal interconnection as a function of brain size. , 1991, Brain, behavior and evolution.

[81]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[82]  Leslie G. Ungerleider,et al.  Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2 , 1986, The Journal of comparative neurology.

[83]  David A. Leopold,et al.  Blindsight depends on the lateral geniculate nucleus , 2010, Nature.

[84]  Bart Krekelberg,et al.  Interactions between Speed and Contrast Tuning in the Middle Temporal Area: Implications for the Neural Code for Speed , 2006, The Journal of Neuroscience.

[85]  Tool-use learning by common marmosets (Callithrix jacchus) , 2011, Experimental Brain Research.

[86]  Leo L. Lui,et al.  Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus) , 2007, The European journal of neuroscience.

[87]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[88]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[89]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[90]  John W Morley,et al.  Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex. , 2015, Cerebral cortex.

[91]  J. Bourne,et al.  Neuroanatomy Original Research Article Materials and Methods , 2022 .

[92]  Tatiana Pasternak,et al.  Representation of comparison signals in cortical area MT during a delayed direction discrimination task. , 2011, Journal of neurophysiology.

[93]  T. Robbins,et al.  Dopamine, But Not Serotonin, Regulates Reversal Learning in the Marmoset Caudate Nucleus , 2011, The Journal of Neuroscience.

[94]  L Weiskrantz,et al.  Visual capacity in the hemianopic field following a restricted occipital ablation. , 1974, Brain : a journal of neurology.

[95]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[96]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[97]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[98]  J. Maunsell,et al.  Attentional Modulation of Behavioral Performance and Neuronal Responses in Middle Temporal and Ventral Intraparietal Areas of Macaque Monkey , 2002, The Journal of Neuroscience.

[99]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  Tristan A. Chaplin,et al.  Visually Evoked Responses in Extrastriate Area MT after Lesions of Striate Cortex in Early Life , 2013, Journal of Neuroscience.

[101]  M. Taiji,et al.  Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets , 2013, Behavioural Brain Research.

[102]  W. Kwan,et al.  The Early Maturation of Visual Cortical Area MT is Dependent on Input from the Retinorecipient Medial Portion of the Inferior Pulvinar , 2012, The Journal of Neuroscience.

[103]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[104]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[105]  E. Nieschlag,et al.  Changes in endocrine profile and reproductive organs during puberty in the male marmoset monkey (Callithrix jacchus). , 2006, Reproduction.

[106]  J. Feldon,et al.  Performance of the marmoset monkey on computerized tasks of attention and working memory. , 2004, Brain research. Cognitive brain research.

[107]  T. Robbins,et al.  The effects of excitotoxic lesions of the basal forebrain on the acquisition, retention and serial reversal of visual discriminations in marmosets , 1990, Neuroscience.

[108]  Selina S. Solomon,et al.  Integration and segregation of multiple motion signals by neurons in area MT of primate. , 2014, Journal of neurophysiology.

[109]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  David A. Leopold,et al.  fMRI in the awake marmoset: Somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia , 2013, NeuroImage.

[111]  M G Rosa,et al.  Cellular heterogeneity in cerebral cortex: A study of the morphology of pyramidal neurones in visual areas of the marmoset monkey , 1999, The Journal of comparative neurology.

[112]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[113]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[114]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  Mazyar Fallah,et al.  Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions , 2003, Neuropsychologia.

[116]  C. J. Maclean,et al.  Unilateral hippocampal and inferotemporal cortex lesions in opposite hemispheres impair learning of single-pair visual discriminations as well as visuovisual conditional tasks in monkeys , 2003, Behavioural Brain Research.

[117]  Leo L. Lui,et al.  Spatial summation, end inhibition and side inhibition in the middle temporal visual area (MT). , 2007, Journal of neurophysiology.

[118]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[119]  H. Okano,et al.  Generation of transgenic non-human primates with germline transmission , 2009, Nature.

[120]  G. Elston,et al.  Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex , 2000, The Journal of Neuroscience.

[121]  H. Gu,et al.  Large-Scale Brain Networks in the Awake, Truly Resting Marmoset Monkey , 2013, The Journal of Neuroscience.

[122]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[123]  John H. Reynolds,et al.  Active Vision in Marmosets: A Model System for Visual Neuroscience , 2014, The Journal of Neuroscience.