The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention

[1]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[2]  M. Pinsk,et al.  A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention , 2018, Neuron.

[3]  Jack J. Lin,et al.  Neural Mechanisms of Sustained Attention Are Rhythmic , 2018, Neuron.

[4]  A. Graybiel,et al.  Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation , 2018, Neuron.

[5]  J. Kaiser,et al.  Attention samples objects held in working memory at a theta rhythm , 2018, bioRxiv.

[6]  Akinori F. Ebihara,et al.  Single neurons may encode simultaneous stimuli by switching between activity patterns , 2018, Nature Communications.

[7]  Sabine Kastner,et al.  Thalamic functions in distributed cognitive control , 2017, Nature Neuroscience.

[8]  E. Halgren,et al.  The generation and propagation of the human alpha rhythm , 2017, Proceedings of the National Academy of Sciences.

[9]  Hinze Hogendoorn,et al.  Voluntary Saccadic Eye Movements Ride the Attentional Rhythm , 2016, Journal of Cognitive Neuroscience.

[10]  Daniel Glen,et al.  Three-Dimensional Digital Template Atlas of the Macaque Brain , 2016, Cerebral cortex.

[11]  Andreas Wutz,et al.  Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements , 2016, Current Biology.

[12]  H. Bridge,et al.  Adaptive Pulvinar Circuitry Supports Visual Cognition , 2016, Trends in Cognitive Sciences.

[13]  Robert Desimone,et al.  Pulvinar-Cortex Interactions in Vision and Attention , 2016, Neuron.

[14]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[15]  Robert Desimone,et al.  Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4 , 2014, Nature Neuroscience.

[16]  Robert Desimone,et al.  Subcortical connections of area V4 in the macaque , 2000, The Journal of comparative neurology.

[17]  Y. Saalmann,et al.  Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location , 2013, Current Biology.

[18]  Tirin Moore,et al.  Prefrontal contributions to visual selective attention. , 2013, Annual review of neuroscience.

[19]  Manuel R. Mercier,et al.  Cortical cross-frequency coupling predicts perceptual outcomes , 2013, NeuroImage.

[20]  N. Kopell,et al.  Thalamic model of awake alpha oscillations and implications for stimulus processing , 2012, Proceedings of the National Academy of Sciences.

[21]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[22]  P. Fries,et al.  Attention Samples Stimuli Rhythmically , 2012, Current Biology.

[23]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention , 2012, Neuron.

[24]  R. Romo,et al.  α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking , 2011, Proceedings of the National Academy of Sciences.

[25]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[26]  John J. Foxe,et al.  The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention , 2011, Front. Psychology.

[27]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[28]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[29]  R. VanRullen,et al.  Spontaneous EEG oscillations reveal periodic sampling of visual attention , 2010, Proceedings of the National Academy of Sciences.

[30]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[31]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[32]  Janita Turchi,et al.  Pulvinar Inactivation Disrupts Selection of Movement Plans , 2010, The Journal of Neuroscience.

[33]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[34]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[35]  Bijan Pesaran Neural correlations, decisions, and actions , 2010, Current Opinion in Neurobiology.

[36]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[37]  Trichur Raman Vidyasagar,et al.  A minimally invasive and reversible system for chronic recordings from multiple brain sites in macaque monkeys , 2009, Journal of Neuroscience Methods.

[38]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[39]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[40]  Glyn W. Humphreys,et al.  Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey , 2009, Proceedings of the National Academy of Sciences.

[41]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[42]  Jie Cui,et al.  2008 Special Issue: BSMART: A Matlab/C toolbox for analysis of multichannel neural time series , 2008 .

[43]  Patrick Cavanagh,et al.  The blinking spotlight of attention , 2007, Proceedings of the National Academy of Sciences.

[44]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[45]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[46]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[47]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[48]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[49]  R. Rafal,et al.  Contributions of the human pulvinar to linking vision and action , 2004, Cognitive, affective & behavioral neuroscience.

[50]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[51]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[52]  Jon H Kaas,et al.  Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys , 2002, The Journal of comparative neurology.

[53]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[54]  H. Karnath,et al.  The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. , 2002, Brain : a journal of neurology.

[55]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[56]  Leslie G. Ungerleider,et al.  Visual cortical projections and chemoarchitecture of macaque monkey pulvinar , 2000, The Journal of comparative neurology.

[57]  B. Seltzer,et al.  Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys , 2000, The Journal of comparative neurology.

[58]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[59]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[60]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[61]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[62]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[63]  R. Rafal,et al.  Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. , 1994, Journal of experimental psychology. General.

[64]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[66]  S. Petersen,et al.  Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. , 1985, Journal of neurophysiology.

[67]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[68]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[69]  Zhongming Liu,et al.  Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal , 2015, Brain Topography.

[70]  Hualou Liang,et al.  BSMART: A Matlab/C , 2008, Neural Networks.

[71]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[72]  Rune W. Berg,et al.  Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. , 2003, Journal of neurophysiology.

[73]  D. B. Bender,et al.  Effect of attentive fixation in macaque thalamus and cortex. , 2001, Journal of neurophysiology.

[74]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.