Accurate Numerical Implementation of the Continuous-Discrete Extended Kalman Filter

This paper addresses an accurate and effective implementation of the continuous-discrete extended Kalman filtering method. The technique under discussion is grounded in numerical solution of the moment differential equations to predict the state mean of the stochastic dynamical system and the corresponding error covariance matrix. Here, we apply an efficient embedded Runge-Kutta pair possessing superior stability and many other attractive features, including automatic global error control, in order to improve performance of the complex computational procedure consisting of the extended Kalman filter and the underlying adaptive ODE solver. Thus, we introduce a new continuous-discrete adaptive extended Kalman filter and show its advantage over the standard variant on two test examples. In practice, this technique allows for much longer sampling intervals without any loss of accuracy, and that improves the applied potential of the extended Kalman filtering method, significantly.

[1]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[2]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[3]  Rüdiger Weiner,et al.  Global error estimation and control in linearly-implicit parallel two-step peer W-methods , 2011, J. Comput. Appl. Math..

[4]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[5]  Lotfi Senhadji,et al.  Various Ways to Compute the Continuous-Discrete Extended Kalman Filter , 2012, IEEE Transactions on Automatic Control.

[6]  G. Kulikov,et al.  Adaptive nested implicit Runge--Kutta formulas of Gauss type , 2009 .

[7]  Robert J. Elliott,et al.  Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.

[8]  Gennady Yu. Kulikov,et al.  Cheap global error estimation in some Runge–Kutta pairs , 2013 .

[9]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[10]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[11]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[12]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[13]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[14]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[15]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[16]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[17]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[18]  Hermann Singer,et al.  Continuous-Discrete Unscented Kalman Filtering , 2005 .

[19]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[20]  Jr. J.J. LaViola,et al.  A comparison of unscented and extended Kalman filtering for estimating quaternion motion , 2003, Proceedings of the 2003 American Control Conference, 2003..

[21]  Thomas Mazzoni,et al.  Computational aspects of continuous–discrete extended Kalman-filtering , 2008, Comput. Stat..

[22]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[23]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[24]  Arkadi I. Merkulov,et al.  Asymptotic error estimate for general Newton-type methods and its application to differential equations , 2007 .