On the H2 Decentralized Controller Synthesis for Delayed Bilateral Teleoperation Systems

Procedure for the synthesis of decentralized controllers for delayed bilateral teleoperation systems is proposed, based on the analytical solution of a global H2 optimization. Explicit state-space formulae for the optimal controller are presented. The controller possesses a neat structure, which preserves closed-loop stability regardless of the delay length. The behavior of the resulting teleoperation system is illustrated in simulations and verified by experiments.

[1]  Septimiu E. Salcudean,et al.  Teleoperation controller design using H∞-optimization with application to motion-scaling , 1996, IEEE Trans. Control. Syst. Technol..

[2]  Maxim Kristalny,et al.  On the decentralized H2 optimal control of bilateral teleoperation systems with time delays , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[3]  Jean-Jacques E. Slotine,et al.  Stable Adaptive Teleoperation , 1990, 1990 American Control Conference.

[4]  S. Munir,et al.  Internet based teleoperation using wave variables with prediction , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[5]  John Doyle,et al.  Dynamic programming solutions for decentralized state-feedback LQG problems with communication delays , 2012, 2012 American Control Conference (ACC).

[6]  Sanjay Lall,et al.  Optimal synthesis and explicit state-space solution for a decentralized two-player linear-quadratic regulator , 2010, 49th IEEE Conference on Decision and Control (CDC).

[7]  Jean-Jacques E. Slotine,et al.  Telemanipulation with Time Delays , 2004, Int. J. Robotics Res..

[8]  Mark W. Spong,et al.  Bilateral teleoperation: An historical survey , 2006, Autom..

[9]  Parikshit Shah,et al.  On the fully decentralized two-block H2 model matching with one-sided dynamics , 2012, 2012 American Control Conference (ACC).

[10]  José Claudio Geromel,et al.  Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions , 2006, IEEE Transactions on Automatic Control.

[11]  Leonid Mirkin,et al.  Dead-Time Compensation for Systems With Multiple I/O Delays: A Loop-Shifting Approach , 2011, IEEE Transactions on Automatic Control.

[12]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[13]  Ali Shahdi,et al.  Model-based Decentralized Control of Time-delay Teleoperation Systems , 2009, Int. J. Robotics Res..

[14]  Gjerrit Meinsma,et al.  H2-optimal control of systems with multiple i/o delays: Time domain approach , 2005, Autom..

[15]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[16]  Bruce A. Francis,et al.  Bilateral controller for teleoperators with time delay via μ-synthesis , 1995, IEEE Trans. Robotics Autom..

[17]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[18]  Neal A. Tanner,et al.  Improving Perception in Time-delayed Telerobotics , 2005, Int. J. Robotics Res..

[19]  Akira Kojima,et al.  Formulas on Preview and Delayed $H^{\infty}$ Control , 2006, IEEE Transactions on Automatic Control.

[20]  P.F. Hokayem,et al.  Stability of Quantized and Delayed Bilateral Teleoperators , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[21]  Sanjay Lall,et al.  Optimal controller synthesis for the decentralized two-player problem with output feedback , 2012, 2012 American Control Conference (ACC).

[22]  Ali Shahdi,et al.  Adaptive/Robust Control for Time-Delay Teleoperation , 2009, IEEE Transactions on Robotics.

[23]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[24]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.